Advanced Information Engineering

#10 December 14 (Mon), 2020 Kenjiro T. Miura

Filtering in Space Domain

 Perform multi-dimensional filtering represented by a linear shift-invariant system.

(a) 原画像

(b) 処理例 1

(c) 処理例 2

図 3.6 フィルタによる画像処理例

2D Output System

$$y(n_1, n_2) = T[x(n_1, n_2)]$$

図 3.7 2 次元システム

Filtering Example in Space Domain

 Moving average filter : by changing the center pixel, calculate average of 3 × 3 pixels.

$$y(n_1, n_2) = \sum_{k_1 = -1}^{1} \sum_{k_2 = -1}^{1} h(k_1, k_2) x(n_1 - k_1, n_2 - k_2)$$
$$= \sum_{k_1 = -1}^{1} \sum_{k_2 = -1}^{1} \frac{1}{9} \cdot x(n_1 - k_1, n_2 - k_2)$$

Moving Average Filter

• Weight *h* is called filter matrix or impulse response.

図 3.8 空間領域におけるフィルタ処理

Impulse Response

• Basic response of the linear shift-invariant system.

 $h(n_1, n_2) = T[\delta(n_1, n_2)]$

図 3.8 空間領域におけるフィルタ処理

Shift-invariant System

- The following equation is satisfied for arbitrary input.
- Note that k_1 and k_2 are arbitrary integers.

$$y(n_1 - k_1, n_2 - k_2) = T[x(n_1 - k_1, n_2 - k_2)]$$

Linear System

- The following equation is satisfied for arbitrary input.
- Note that k_1 and k_2 are arbitrary integers.

 $T[ax_1(n_1, n_2) + bx_2(n_1, n_2)] = ay_1(n_1, n_2) + by_2(n_1, n_2)$

Linear shiftinvariant system

- System which satisfies linearity and shift invariance.
- What kind of response of (a) ?
- Show (b) and (c) ?

図 3.9 線形性とシフト不変性

Convolution

• For a linear shift-invariant system its output is calculated as a weighted sum (convolution).

$$y(n_1, n_2) = \sum_{k_1 = -\infty}^{\infty} \sum_{k_2 = -\infty}^{\infty} h(k_1, k_2) x(n_1 - k_1, n_2 - k_2)$$

= $h(n_1, n_2) * x(n_1, n_2)$

Exercise Example

• Under the assumption of linear shiftinvariance, perform convolution by using the input signal in Fig.(a) and impulse $h(n_1, n_2)$.

Answer

$$y(n_1, n_2) = \sum_{k_1=0}^{2} \sum_{k_2=0}^{0} x(k_1, k_2)h(n_1 - k_1, n_2 - k_2)$$

= $h(n_1, n_2) + 2h(n_1 - 1, n_2) + h(n_1 - 2, n_2)$

Exercise Examples

• Show the impulse response for the following systems.

【例題 3.6】 以下のシステムのインパルス応答を示せ. (a) $y(n_1, n_2) = x(n_1, n_2) - x(n_1 - 1, n_2)$ (b) $y(n_1, n_2) = x(n_1, n_2) - x(n_1, n_2 - 1)$ (c) $y(n_1, n_2) = \{x(n_1, n_2) + x(n_1 - 1, n_2) + x(n_1, n_2 - 1) + x(n_1 - 1, n_2 - 1)\}/4$

Answers

【解答】 (a) $x(n_1, n_2) = \delta(n_1, n_2)$ を代入すると, $h(n_1, n_2) = \delta(n_1, n_2) - \delta(n_1 - 1, n_2)$ となる (図 3.12(a) 参照). 同様に考えると, (b)(c) に対して図 3.12(b)(c) を得る.

Frequency Characteristic of System

- One of the purposes of filtering is to pass specific frequency components.
- The filter of a linear shift-invariant system is evaluated by frequency characteristic.

Frequency Characteristic

 Since it is the same equation for discrete spatial Fourier transform, if the signal is even symmetric, the frequency characteristic is real-valued.

$$H(e^{j\omega_1}, e^{j\omega_2}) = \sum_{n_1=-\infty}^{\infty} \sum_{n_2=-\infty}^{\infty} h(n_1, n_2) e^{-j(\omega_1 n_1 + \omega_2 n_2)}$$
$$= A(\omega_1, \omega_2) e^{j\theta(\omega_1, \omega_2)}$$

Derivation of Frequency Characteristic

• For a linear shift-invariant system, input a complex sinusoidal signal, then....

$$y(n_1, n_2) = \sum_{k_1 = -\infty}^{\infty} \sum_{k_2 = -\infty}^{\infty} h(k_1, k_2) e^{j(\omega_1(n_1 - k_1) + \omega_2(n_2 - k_2))}$$

= $\left(\sum_{k_1 = -\infty}^{\infty} \sum_{k_2 = -\infty}^{\infty} h(k_1, k_2) e^{-j(\omega_1 k_1 + \omega_2 k_2)}\right) e^{j(\omega_1 n_1 + \omega_2 n_2)}$
 $y(n_1, n_2) = H(e^{j\omega_1}, e^{j\omega_2}) e^{j(\omega_1 n_1 + \omega_2 n_2)}$
 $= A(\omega_1, \omega_2) e^{j\theta(\omega_1, \omega_2)} e^{j(\omega_1 n_1 + \omega_2 n_2)}$
 $= A(\omega_1, \omega_2) e^{j((\omega_1 n_1 + \omega_2 n_2) + \theta(\omega_1, \omega_2))}$

Frequency Characteristic

- A linear shift-invariant system outputs sinusoidal wave with the same frequency as the input wave.
- The differences between the input and output are only $A(w_1, w_2)$ and $\theta(w_1, w_2)$.
- A(w₁,w₂) and $\theta(w_1,w_2)$ are obtained from Eq.(3.33) by using h(n₁,n₂).

Exercise Example

- Find the frequency characteristics $(A(w_1, w_2)$ and $\theta(w_1, w_2)$ of the following linear shiftinvariant.
- Illustrate the frequency characteristics.

(a)
$$y(n_1, n_2) = x(n_1, n_2) - x(n_1 - 1, n_2)$$

(b) $y(n_1, n_2) = x(n_1, n_2) - x(n_1, n_2 - 1)$
(c) $y(n_1, n_2) = \{x(n_1, n_2) + x(n_1 - 1, n_2) + x(n_1, n_2 - 1) + x(n_1 - 1, n_2 - 1)\}/4$

Answer

【解答】 (a) 式 (3.33) にインパルス応答を代入すると, $H(e^{j\omega_1}, e^{j\omega_2}) = 1 - e^{-j\omega_1} = (e^{j\omega_1/2} - e^{j\omega_1/2})e^{-j\omega_1/2} = 2\sin(\omega_1/2)e^{-j(\omega_1/2 - \pi/2)}, A(\omega_1, \omega_2) = 2\sin(\omega_1/2), \theta(\omega_1, \omega_2) = -(\omega_1/2 - \pi/2)$ (c) $H(e^{j\omega_1}, e^{j\omega_2}) = \cos(\omega_1/2)\cos(\omega_2/2)e^{-j(\omega_1/2 + \omega_2/2)}, A(\omega_1, \omega_2) = \cos(\omega_1/2)\cos(\omega_2/2), \theta(\omega_1, \omega_2) = -(\omega_1/2 + \omega_2/2)$ となる. 図 3.14 にこれらの振幅特性 $A(\omega_1, \omega_2)$ を図示する.

図 3.14 例題 3.7

Z Transform and Transfer Function

 To represent a linear shift-invariant system compactly, we define a transfer function based on Z transform.

2次元信号
$$g(n_1, n_2)$$
 に対する z 変換は,
 $G(z_1, z_2) = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} g(n_1, n_2) z_1^{-n_1} z_2^{-n_2}$

Z Transform

- Transform defined in discrete space (Laplace transform)
- By substituting Z_1 , Z_2 with $e^{j\omega_1}$ and $e^{j\omega_2}\epsilon$, we will obtain discrete space Fourier transform.

2次元信号
$$g(n_1, n_2)$$
 に対する z 変換は,
 $G(z_1, z_2) = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} g(n_1, n_2) z_1^{-n_1} z_2^{-n_2}$

Properties of Z Transform

- Linearity, separability for separable signals, convolution, shift of signals
- Similar properties with Fourier transform

性質	信号	変換領域
線形性	$a_1g_1(n_1, n_2) + a_2g_2(n_1, n_2)$	$a_1G_1(z_1, z_2) + a_2G_2(z_1, z_2)$
可分性	$g_1(n_1)g_2(n_2)$	$G_1(z_1)G_2(z_2)$
たたみ込み	$h(n_1, n_2) * x(n_1, n_2)$	$H(z_1, z_2)X(z_1, z_2)$
シフト	$g(n_1-k_1,n_2-k_2)$	$G(z_1, z_2)z_1^{-k_1}z_2^{-k_2}$

Transfer Function

Convolution

$$y(n_1, n_2) = \sum_{k_1 = -\infty}^{\infty} \sum_{k_2 = -\infty}^{\infty} h(k_1, k_2) x(n_1 - k_1, n_2 - k_2)$$

= $h(n_1, n_2) * x(n_1, n_2)$

• From the properties of Z transform

 $Y(z_1, z_2) = H(z_1, z_2)X(z_1, z_2)$ where H(z₁, z₂) is called a transfer function.

• Ex. Point spread function of optical microscopy and optical transfer function

Transfer Function

- The frequency characteristic is obtained from its transfer function.
- When the impulse response is a separable signal, its filter becomes a separable filter because of the properties of Z transform.

Exercise Example

- Find the transfer function of the following linear shift-invariant system.
- Show that the system is separable.

(c)
$$y(n_1, n_2) = \{x(n_1, n_2) + x(n_1 - 1, n_2) + x(n_1, n_2 - 1) + x(n_1 - 1, n_2 - 1)\}/4$$

Answer

- Input an unit impulse signal to the system and obtain the impulse response.
- Perform Z transform for the impulse response and get the transfer function.

 $H(z_1, z_2) = 1/4 \cdot (1 + z_1^{-1} + z_2^{-1} + z_1^{-1} z_2^{-1}) = 1/4 \cdot (1 + z_1^{-1})(1 + z_2^{-1})$

Separable Filter

- Most of the image processing are performed based on separable filters and have the following properties.
- Multi-dimensional filter can consist of iterations of 1D filter processing.
- Its computational cost is relatively low.
- There are limits on realizable frequency characteristics.

Separable Filter

- Multi-dimensional filter can consist of iterations of 1D filter processing.
- Its computational cost is relatively low.

図 3.17 分離型フィルタの実行手順

Separable Filter

- There are limits on realizable frequency characteristics.
- Which can be realizable by a separable filter?

Filter Processing in the Frequency Domain

- Can be perform by FFT.
- Manipulate image spectrum directly.

図 3.21 周波数領域でのフィルタ処理手順