Advanced Information Engineering

#11 December 21 (Mon), 2020 Kenjiro T. Miura

Frequency Characteristic of System

- One of the purposes of filtering is to pass specific frequency components.
- The filter of a linear shift-invariant system is evaluated by frequency characteristic.

Frequency Characteristic

 Since it is the same equation for discrete spatial Fourier transform, if the signal is even symmetric, the frequency characteristic is real-valued.

$$H(e^{j\omega_1}, e^{j\omega_2}) = \sum_{n_1=-\infty}^{\infty} \sum_{n_2=-\infty}^{\infty} h(n_1, n_2) e^{-j(\omega_1 n_1 + \omega_2 n_2)}$$
$$= A(\omega_1, \omega_2) e^{j\theta(\omega_1, \omega_2)}$$

Derivation of Frequency Characteristic

• For a linear shift-invariant system, input a complex sinusoidal signal, then....

$$y(n_1, n_2) = \sum_{k_1 = -\infty}^{\infty} \sum_{k_2 = -\infty}^{\infty} h(k_1, k_2) e^{j(\omega_1(n_1 - k_1) + \omega_2(n_2 - k_2))}$$

= $\left(\sum_{k_1 = -\infty}^{\infty} \sum_{k_2 = -\infty}^{\infty} h(k_1, k_2) e^{-j(\omega_1 k_1 + \omega_2 k_2)}\right) e^{j(\omega_1 n_1 + \omega_2 n_2)}$
 $y(n_1, n_2) = H(e^{j\omega_1}, e^{j\omega_2}) e^{j(\omega_1 n_1 + \omega_2 n_2)}$
 $= A(\omega_1, \omega_2) e^{j\theta(\omega_1, \omega_2)} e^{j(\omega_1 n_1 + \omega_2 n_2)}$
 $= A(\omega_1, \omega_2) e^{j((\omega_1 n_1 + \omega_2 n_2) + \theta(\omega_1, \omega_2))}$

Z Transform and Transfer Function

 To represent a linear shift-invariant system compactly, we define a transfer function based on Z transform.

2次元信号
$$g(n_1, n_2)$$
 に対する z 変換は,
 $G(z_1, z_2) = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} g(n_1, n_2) z_1^{-n_1} z_2^{-n_2}$

Z Transform

- Transform defined in discrete space (Laplace transform)
- By substituting Z_1 , Z_2 with $e^{j\omega_1}$ and $e^{j\omega_2}\epsilon$, we will obtain discrete space Fourier transform.

2次元信号
$$g(n_1, n_2)$$
 に対する z 変換は,
 $G(z_1, z_2) = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} g(n_1, n_2) z_1^{-n_1} z_2^{-n_2}$

Properties of Z Transform

- Linearity, separability for separable signals, convolution, shift of signals
- Similar properties with Fourier transform

性質	信号	変換領域
線形性	$a_1g_1(n_1, n_2) + a_2g_2(n_1, n_2)$	$a_1G_1(z_1, z_2) + a_2G_2(z_1, z_2)$
可分性	$g_1(n_1)g_2(n_2)$	$G_1(z_1)G_2(z_2)$
たたみ込み	$h(n_1, n_2) * x(n_1, n_2)$	$H(z_1, z_2)X(z_1, z_2)$
シフト	$g(n_1-k_1,n_2-k_2)$	$G(z_1, z_2)z_1^{-k_1}z_2^{-k_2}$

Transfer Function

Convolution

$$y(n_1, n_2) = \sum_{k_1 = -\infty}^{\infty} \sum_{k_2 = -\infty}^{\infty} h(k_1, k_2) x(n_1 - k_1, n_2 - k_2)$$

= $h(n_1, n_2) * x(n_1, n_2)$

• From the properties of Z transform

 $Y(z_1, z_2) = H(z_1, z_2)X(z_1, z_2)$ where H(z₁, z₂) is called a transfer function.

• Ex. Point spread function of optical microscopy and optical transfer function

Transfer Function

- The frequency characteristic is obtained from its transfer function.
- When the impulse response is a separable signal, its filter becomes a separable filter because of the properties of Z transform.

Exercise Example

- Find the transfer function of the following linear shift-invariant system.
- Show that the system is separable.

(c)
$$y(n_1, n_2) = \{x(n_1, n_2) + x(n_1 - 1, n_2) + x(n_1, n_2 - 1) + x(n_1 - 1, n_2 - 1)\}/4$$

Answer

- Input an unit impulse signal to the system and obtain the impulse response.
- Perform Z transform for the impulse response and get the transfer function.

 $H(z_1, z_2) = 1/4 \cdot (1 + z_1^{-1} + z_2^{-1} + z_1^{-1} z_2^{-1}) = 1/4 \cdot (1 + z_1^{-1})(1 + z_2^{-1})$

Separable Filter

- Most of the image processing are performed based on separable filters and have the following properties.
- Multi-dimensional filter can consist of iterations of 1D filter processing.
- Its computational cost is relatively low.
- There are limits on realizable frequency characteristics.

Separable Filter

- Multi-dimensional filter can consist of iterations of 1D filter processing.
- Its computational cost is relatively low.

図 3.17 分離型フィルタの実行手順

Separable Filter

- There are limits on realizable frequency characteristics.
- Which can be realizable by a separable filter?

Filter Processing in the Frequency Domain

- Can be perform by FFT.
- Manipulate image spectrum directly.

図 3.21 周波数領域でのフィルタ処理手順

Enhancement of Image

 Most of the purposes of image signal processing are to enhance necessary information in the images for individual applications.

Classification of Image Enhancement

- Classified into pixel processing and local processing.
- Filter processing we have already studied is classified as local processing.

図 4.1 局所処理と画素処理

Histogram

- Correct histogram to image enhancement.
- The following images are CT or MRI with 512×512 pixels and 8 bits/pixel. Only change lightness and contrast is low.

Histogram

- The left image is of high contrast and the graph is histogram.
- From the right image we find that the histogram doesn't have spatial information although it has important information.

Density conversion

• Convert intensity r to s according to r.

図 4.5 濃度変換関数と変換例

γ Correction

- Input/output characteristic of imaging and displaying devices is generally non-linear and the output signal is distorted.
- In order to correct the distortion, γ correction is used which is one of density conversion.
- How is the intensity converted?

$$s=T[r]=r^{\gamma}$$

Normalization of Intensity

• The values of the histogram depends on the image resolution, so it is usually normalized.

そこで、画素値 r_i の度数 $P(r_i)$ を、度数の総和 $N_T = N_1 \times N_2$ $p(r_i) = P(r_i)/N_T$

Histogram Flattening

• Histogram flattening can perform image enhancement (high contrast).

階調数 $L = 2^l$ の画像において、画素値 r_i 、 $(r_i < r_{i+1})$ 、 $i = 0, 1, \dots, L-1$ を s_i に変換する濃度変換関数は $s_i = T[r_i] = (L-1) \sum_{i=1}^{i} P(r_m)/N_T$

m=0 $= (L-1)\sum_{i=1}^{i} p(r_m)$

画素値 *r*_i

255

(4.4)

Exercise Example

【**例題 4.1**】 図 4.8(a) のヒストグラムを持つ 8 階調の画像を考える. (a) 式 (4.4) に基づくヒストグラムの平坦化を実行せよ. (b) 平均値 m,標準偏差

σを求めよ.

回答(a) _{表 4.1} 例題 4.1 の計算結果

)					-	C	7
-	1	2	3	4	5	0	I I
J	1		0	1	5	6	7
)	1	2	3	4	10	4	0
0	0	0	2	4	10	4	0
0	0	0	2/20	4/20	10/20	4/20	0
U	0	0	1/20	19/20	112/20	140/20	140/20
0	0	0	14/20	42/20	112/20	7	7
0	0	0	0	2	5	1	-
)))) 0 0	$\begin{array}{c c} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

表 4.1 例題 4.1 の計算結果

	0	1	2	3	4	5	6	7	
ı	0	1	2	3	4	5	6	7	
r_i	0	1	4	0	1	10	4	0	
$P(r_i)$	0	0	0	2	4	10/20	1/20	0	
$p(r_i)$	0	0	0	2/20	4/20	10/20	4/20	140/20	
Si	0	0	0	14/20	42/20	112/20	140/20	140/20	
	0	0	0	0	2	5	7	1	
Si (EXIL)	U	U							

$$m = \frac{1}{N_T} \sum_{i=0}^{7} r_i \cdot P(r_i) = 4.8$$

 $\sigma = \left(\frac{1}{N_T} \sum_{i=0}^7 (r_i - m)^2 \cdot P(r_i)\right)^{1/2} \simeq 0.8718$

Color Image Signal

- The display uses additive color mixing of RGB colors to represent colors.
- If two colors are mixed and become white, the these colors are called complementary colors.
- Complementary color of red ?
- Complementary color of white ?

加法混色

The 3 Primary Colors of the Object

- Object Color(CMY) : Color of surface and reflection light when the object is lit by white light.
- Some spectrum of white light is absorbed by the object (subtractive color mixing).
- Color printer uses CMY inks. Is black necessary ?

図 4.10 物体色の概念

図 4.11 減法混色

RGB Color Space

- Color image signal usually consists of three signal values.
- RGB color space is a 3D space using the orthogonal coordinate system of RGB based on additive color mixing.
- How many colors can be represented when 1 bit is assigned to each of RGB ?
- How many colors can be represented when 8 bits are assigned to each of RGB ?

Luminance and Color Difference Space

- The human visual characterristics are different for luminance and color, color signal is subdivided into luminance and color information.
- YC_bC_r is used.
- Luminance Y=0.299R+0.587G+0.114B (This is used for monochromatic signal converted from color image signal.)
- C_b : color difference B, C_r: color difference
- For a image with tone L, offset D_{L} is to be L/2, $C_{b}=(0.5/0.886)(B-Y)+D_{L}$ $C_{r}=(0.5/0.701)(R-Y)+D_{L}$

Luminance and Color Difference Space

$$\begin{bmatrix} Y \\ C_b \\ C_r \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.169 & -0.331 & 0.500 \\ 0.500 & -0.419 & -0.081 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix} + \begin{bmatrix} 0 \\ D_L \\ D_L \end{bmatrix}$$

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1.402 \\ 1 & -0.344 & -0.714 \\ 1 & 1.722 & 0 \end{bmatrix} \begin{bmatrix} Y \\ C_b \\ C_r \end{bmatrix} + \begin{bmatrix} 0 \\ D_L \\ D_L \end{bmatrix}$$

Color Space

- RGB color space is suitable for display and imaging devices.
- YC_bC_r color space is suitable for image transfer and compression.
- The human vision's sensitivity in the high frequency domain is worse for color difference than luminance and there are compression color format reducing color difference signal.
- There are other various color space adjusted to human vision and devices.

Example Exercise

• Find the formula to convert RGB values to CMY values of a pixel. We assume that RGB values are normalized as $0 \sim 1$.

Answer

Ye, C, Mは, R, G, Bの補色である. ゆえに, それらの相互変換は, $\begin{bmatrix} C\\M\\Ye \end{bmatrix} = \begin{bmatrix} 1\\1\\1 \end{bmatrix} - \begin{bmatrix} R\\G\\B \end{bmatrix}$ ここで, 値1は白色を意味する.