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Fourier Analysis of Signal
• A non-sinusoidal wave is generated by 
adding two sinusoidal waves with different 
frequencies. 

• There are cases where an non-sinusoidal 
wave is decomposed into plural sinusoidal 
waves.

• Since the law of superposition is satisfied for 
linear systems, the process for a non-
sinusoidal wave comes down to those for 
plural sinusoidal waves by Fourier analysis.



Fourier Transform of Discrete Signals

• The Fourier transform of 1-dimensioncal non-
periodic discrete signal is given
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Fourier Transform of Discrete Signals

• The Fourier transform of 2-dimensioncal non-
periodic discrete signal is given by

g(𝑛𝑛1,𝑛𝑛2)
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Amplitude and Phase Spectrums

Even g 𝑛𝑛1,𝑛𝑛2 is a real valued function, 𝐺𝐺 𝜔𝜔1,𝜔𝜔2
is generally a complex valued function.

As 𝐺𝐺 𝜔𝜔1,𝜔𝜔2 = 𝐴𝐴(𝜔𝜔1,𝜔𝜔2)𝑒𝑒𝑗𝑗𝜃𝜃(𝜔𝜔1,𝜔𝜔2), complex 
values are represented by polar coordinate 
system and draw spectrum by calculating 
amplitude and phase spectrums. 



Exercise Example
• Perform Fourier transform the following 2-
dimensional non-periodic discrete signal.

• Furthermore, as 𝐺𝐺 𝜔𝜔1,𝜔𝜔2 = 𝐴𝐴(𝜔𝜔1,𝜔𝜔2)𝑒𝑒𝑗𝑗𝜃𝜃(𝜔𝜔1,𝜔𝜔2)

by representing by polar coordinate and 
calculate amplitude and phase spectrums.

• Draw the amplitude spectrum if possible.

g(n1,n2)= 1（ 0≦n1≦L1-1, and 0≦n2≦L2-1 ）
0（otherwise）
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Amplitude-only and Phase-only Images



Symmetry of Spectrum
• In case where g 𝑛𝑛1,𝑛𝑛2 is a real valued function, 

its discrete Fourier transform given by
𝐺𝐺 𝜔𝜔1,𝜔𝜔2 = 𝐴𝐴(𝜔𝜔1,𝜔𝜔2)𝑒𝑒𝑗𝑗𝜃𝜃(𝜔𝜔1,𝜔𝜔2) satisfies

𝐴𝐴 𝜔𝜔1,𝜔𝜔2 = 𝐴𝐴 −𝜔𝜔1,−𝜔𝜔2

𝜃𝜃 𝜔𝜔1,𝜔𝜔2 = −𝜃𝜃(−𝜔𝜔1,−𝜔𝜔2)
（proof skipped）
Amplitude spectrum : even symmetry
Phase spectrum : odd symmetry



Signal Shift
• Signal g(𝑛𝑛1,𝑛𝑛2) and its 

discrete Fourier transform 
𝐺𝐺 𝜔𝜔1,𝜔𝜔2

• For integers k1 k2, and signal 
g(𝑛𝑛1 − 𝑘𝑘1,𝑛𝑛2 − 𝑘𝑘2) , its 
discrete Fourier transform is 
given by
𝐺𝐺 𝜔𝜔1,𝜔𝜔2 𝑒𝑒−𝑖𝑖(𝜔𝜔1𝑘𝑘1+𝜔𝜔2𝑘𝑘2)．

（proof skipped）
• No effect on phase spectrum
• Why？



Discrete Spatial Fourier Transform (DSFT）

g(𝑛𝑛1, 𝑛𝑛2)
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The Fourier analysis performed by computer is 
done by FFT．



Discrete Spatial Fourier Transform (DSFT）

Consider the case where g(𝑛𝑛1,𝑛𝑛2) is defined 
within finite domain N1×N2, i.e. 2-dimensial 
image signal.
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Can the computer perform DSFT？



Fast Fourier Transform（FFT）

• FFT is a fast calculation version of discrete 
Fourier transform（DFT）．



Discrete Fourier Transform（DFT）
• DSFT with frequency discretization
• In case where g(𝑛𝑛1,𝑛𝑛2)が is defined in N1×N2, a finite 

domain, i.d. 2-dimensional image.

Where

Thus the values of DFT are sampled ones of DSFT obtained 
by the intervals uniform intervals  of spectrum period/N1

and N2.



Periodicity of DFT

• The number of independent points in both of 
the spatial and frequency domains is N1×N2 
and we assume their periodicity and perform 
calculations.



Exercise Example
• 1 dimensional discrete signal of N points

You can use a calculator to calculate amplitude.
Since (b) takes long time , please do (a).
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• Larger N, more sufficient sampling density
• For Fourier image analysis, how to make sure to 
get sufficient sampling density?



Fast Fourier Transform（FFT）

• FFT is to make DFT（a lot of computational 
cost）faster.

• Without approximation error, it can perform 
DFT strictly.

• The method which takes advantage of Matrix 
decomposition method（decomposability of 
DFT）.



Matrix Decomposition
（decomposability of DFT）

• Direct 2D DFT repeats N1×N2 DFT by N1×N2 times.
• In case of matrix decomposition, for horizontal row 

data perform N1 1D DFT by N2 times, then for 
column data perform N2 1D DFT by N1 times.



Example
• (a): 2D image signal
• (b): for (a), perform 
DFT horizontally

• (c): for (b), perform 
DFT vertically.

• (d): By using the 
periodicity of DFT,
put DC component at 
the center.



Comparison of Operation Number



Sampling Effect

• Sampling generally gives signals distortions
（aliasing).



Sampling Theorem

• Theorem that give some condition to avoid 
the effects of sampling



Sampling Theorem
• Fig.(a): 2D continuous signal’s bandwidth is limited 

by angular frequency Ωm1 and Ωm2.（No signal 
exists outside of the limited bandwidth.）

• Fig.(b): Assume rectangular sampling, 2D discrete 
signal has rectangular periodic spectrum.



Sampling Theorem

No overlap exists for spectrum.
• Theoretically it is possible to reconstruct 
perfectly the original signal from sample 
values by filtering.



折り返し歪み（Aliasing）
• By sampling without keeping sampling theorem,
the spectrums overlap and distort the
continuous signal. This distortion (overlap of 
spectrums) is called aliasing．



Example
𝑔𝑔𝑎𝑎 (𝑥𝑥,𝑦𝑦) = cos(2𝜋𝜋𝑥𝑥 + 4𝜋𝜋𝑦𝑦)

Calculate the maximum sapling intervals Ts1

and Ts2 to keep the sampling theorem. 



Answer

• Since the spatial frequency is 1, 2 
respectively in the x and y directions, the 
minimum sampling frequencies are 2, and 4 
and their corresponding sampling intervals Ts1

and Ts2 are ½ and ¼, respectively.
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