
Advanced Information 
Engineering

#8 November 30 (Mon), 2020
Kenjiro T. Miura



Assignment #2 Ex.1 Answer
Consider 2-dimensional sinusoidal wave signal 
ga(x,y)=3 cos (2 π x - 4 π y + π/4)

Draw spectrum.
ga(x,y)=3

2
(𝑒𝑒𝑗𝑗(2𝜋𝜋(𝑥𝑥−2𝑦𝑦)+𝜋𝜋4) + 𝑒𝑒𝑗𝑗(−2𝜋𝜋 𝑥𝑥−2𝑦𝑦 −𝜋𝜋4))



Assignment #2 Ex.1 Answer
Consider 2-dimensional sinusoidal wave signal 
ga(x,y)=3 cos (2 π x - 4 π y + π/4)

Illustrate this wave assuming that its variables 
are x, y．



Assignment #2 Ex.2 Answer
Calculate a continuous signal which has 
spectrums given by Fig. 1.

(a) ga(x,y)= 2cos (2 π y)+cos(4πy)

(b) ga(x,y)= cos (4 π x+2πy-𝜋𝜋
4

)



Assignment #2 Ex.3 Answer
Perform discrete spatial Fourier transform of each 
of the signals shown in Fig. 2.

(a) 𝐺𝐺(𝜛𝜛1,𝜛𝜛2)=1+𝑒𝑒−𝑗𝑗𝜛𝜛1 + 𝑒𝑒−𝑗𝑗𝜛𝜛2+𝑒𝑒−𝑗𝑗(𝜛𝜛1+𝜛𝜛2)

=4 cos(𝜛𝜛1
2

) cos(𝜛𝜛2
2

)𝑒𝑒−
𝑗𝑗(𝜛𝜛1+𝜛𝜛2)

2

(b) 𝐺𝐺(𝜛𝜛1,𝜛𝜛2)=1+𝑒𝑒−𝑗𝑗𝜛𝜛2 + 𝑒𝑒−2𝑗𝑗𝜛𝜛2+𝑒𝑒−3𝑗𝑗𝜛𝜛2

=2 (cos(𝜛𝜛2
2

) cos(3𝜛𝜛2
2

))𝑒𝑒−
𝑗𝑗3𝜛𝜛2
2

(c ) 𝐺𝐺(𝜛𝜛1,𝜛𝜛2)=𝑒𝑒𝑗𝑗𝜛𝜛1 + 1 + 𝑒𝑒−𝑗𝑗𝜛𝜛1 = 1 + 2cos(𝜛𝜛1)



Assignment #2 Ex.4 Answer
When a real-valued 2-dimensional discrete signal 
g(n1,n2) satisfies that g(n1,n2)=g(-n1,-n2), show that 
its discrete spatial Fourier transform (DSFT) 
G(w1,w2) is real-valued.

𝐺𝐺 𝜛𝜛1,𝜛𝜛2

= �
𝑛𝑛1=−∞

∞

�
𝑛𝑛2=−∞

∞

𝑔𝑔(𝜛𝜛1,𝜛𝜛2)𝑒𝑒−𝑗𝑗𝜛𝜛1𝑛𝑛1 𝑒𝑒−𝑗𝑗𝜛𝜛2𝑛𝑛2



Assignment #2 Ex.4 Answer

+



Assignment #2 Ex.5 Answer
Consider a 2-dimensional sinusoidal wave ga(x,y)=cos(2π x + 4 π 
y)．In order to satisfy the sampling theorem, we would like to 
sample as follows:
g(n1,n2)=ga(x,y)|x=n1TS1,y=n2 TS2.
Indicate the conditions for sampling intervals TS1 and TS2 to be 
satisfied．

𝐹𝐹𝑠𝑠1 = 1
𝑇𝑇𝑠𝑠1

> 2 and 𝐹𝐹𝑠𝑠2 = 1
𝑇𝑇𝑠𝑠2

> 4



Fast Fourier Transform（FFT）

• FFT is a fast calculation version of discrete 
Fourier transform（DFT）．



Discrete Fourier Transform（DFT）
• DSFT with frequency discretization
• In case where g(𝑛𝑛1,𝑛𝑛2)が is defined in N1×N2, a finite 

domain, i.d. 2-dimensional image.

Where

Thus the values of DFT are sampled ones of DSFT obtained 
by the intervals uniform intervals  of spectrum period/N1

and N2.



Periodicity of DFT

• The number of independent points in both of 
the spatial and frequency domains is N1×N2 
and we assume their periodicity and perform 
calculations.



Exercise Example
• 1 dimensional discrete signal of N points

You can use a calculator to calculate amplitude.
Since (b) takes long time , please do (a).



Answer

• The larger N, the more sufficient sampling density
• For Fourier image analysis, how to make sure to get 

sufficient sampling density?



Fast Fourier Transform（FFT）

• FFT is to make DFT（a lot of computational 
cost）faster.

• Without approximation error, it can perform 
DFT strictly.

• The method which takes advantage of Matrix 
decomposition method（decomposability of 
DFT）.



Matrix Decomposition
（decomposability of DFT）

• Direct 2D DFT repeats N1×N2 DFT by N1×N2 times.
• In case of matrix decomposition, for horizontal row 

data perform N1 1D DFT by N2 times, then for 
column data perform N2 1D DFT by N1 times.



Example
• (a): 2D image signal
• (b): for (a), perform 
DFT horizontally

• (c): for (b), perform 
DFT vertically.

• (d): By using the 
periodicity of DFT,
put DC component at 
the center.



Comparison of Operation Number



Sampling Effect

• Sampling generally gives signals distortions
（aliasing).



Sampling Theorem

• Theorem that give some condition to avoid 
the effects of sampling



Sampling Theorem
• Fig.(a): 2D continuous signal’s bandwidth is limited 

by angular frequency Ωm1 and Ωm2.（No signal 
exists outside of the limited bandwidth.）

• Fig.(b): Assume rectangular sampling, 2D discrete 
signal has rectangular periodic spectrum.



Sampling Theorem

No overlap exists for spectrum.
• Theoretically it is possible to reconstruct 
perfectly the original signal from sample 
values by filtering.



折り返し歪み（Aliasing）
• By sampling without keeping sampling theorem,
the spectrums overlap and distort the
continuous signal. This distortion (overlap of 
spectrums) is called aliasing．



Example
𝑔𝑔𝑎𝑎 (𝑥𝑥,𝑦𝑦) = cos(2𝜋𝜋𝑥𝑥 + 4𝜋𝜋𝑦𝑦)

Calculate the maximum sapling intervals Ts1

and Ts2 to keep the sampling theorem. 



Answer

• Since the spatial frequency is 1, 2 
respectively in the x and y directions, the 
minimum sampling frequencies are 2, and 4 
and their corresponding sampling intervals Ts1

and Ts2 are ½ and ¼, respectively.



Basics of Multi-dimensional Filter

• Most of image processing perform filtering to  
remove or enhance specific frequency 
components.

• Today we will study about filtering in the 
spatial domain and frequency domain.



Typical Signals
• ２D sinusoidal wave signal

• ２D complex sinusoidal wave signal

• ２D unit sample signal（2D unit impulse)

• ２D unit step signal



Typical Signals
• 2D unit sample signal（2D impulse signal）

• ２D unit step signal 



Continuous Delta Function δ(t)



Example 

Represent impulse δ(n1,n2) by 2D unit step signal u(n1,n2).



Answer



Example：Impulse Signal
• 2D image is a set of 2D impulse signals.
• Represent the following 2D images by using 
impulse δ(n1,n2). 



Answers



Representation of 2D Image by Impulse

• By generalization,



Example Exercise



Answer



Exercise Example

What is the signal given by 
g(n1,n2) = ∑𝑘𝑘1=0

∞ ∑𝑘𝑘2
∞ 𝛿𝛿(𝑛𝑛1 − 𝑘𝑘1,𝑛𝑛2 − 𝑘𝑘2)? 



Answer

2D unit step signal u(n1,n2)



Separability of Signal

• If a 2D signal is represented by a product of 
two 1D signals, it is called a separable signal.

• If not, it is called a non-separable signal.



Example：Separability of Signal

• Most general signal is non-separable.
• Are 2D unit impulse signal and 2D unit steps 
signal separable?



Answer

See the left figure．
Hence，

2D unit step signal is also separable.



Example

• Is the signal in Fig. 3.5 separable or non-
separable?



Answer
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