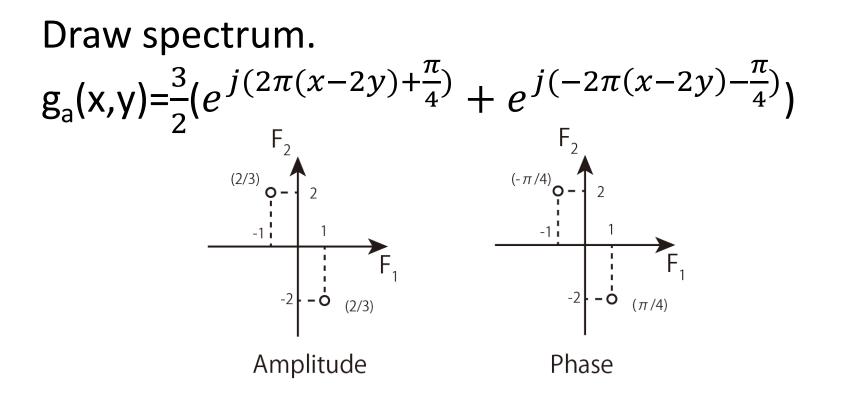
Advanced Information Engineering

#8 November 30 (Mon), 2020 Kenjiro T. Miura

Assignment #2 Ex.1 Answer

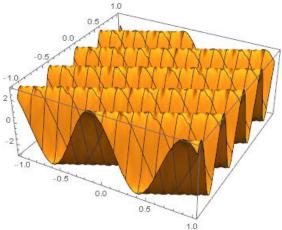
Consider 2-dimensional sinusoidal wave signal $g_a(x,y)=3 \cos (2 \pi x - 4 \pi y + \pi/4)$



Assignment #2 Ex.1 Answer

Consider 2-dimensional sinusoidal wave signal $g_a(x,y)=3 \cos (2 \pi x - 4 \pi y + \pi/4)$

Illustrate this wave assuming that its variables are x, y.



Assignment #2 Ex.2 Answer

Calculate a continuous signal which has spectrums given by Fig. 1.

(a) $ga(x,y) = 2cos (2 \pi y) + cos(4\pi y)$

(b) ga(x,y) = cos (4 π x+2 π y- $\frac{\pi}{4}$)

Assignment #2 Ex.3 Answer

Perform discrete spatial Fourier transform of each of the signals shown in Fig. 2.

(a) $G(\varpi_1, \varpi_2) = 1 + e^{-j\varpi_1} + e^{-j\varpi_2} + e^{-j(\varpi_1 + \varpi_2)}$ $= 4\cos(\frac{\varpi_1}{2})\cos(\frac{\varpi_2}{2})e^{-\frac{j(\varpi_1 + \varpi_2)}{2}}$ (b) $G(\varpi_1, \varpi_2) = 1 + e^{-j\varpi_2} + e^{-2j\varpi_2} + e^{-3j\varpi_2}$ $= 2(\cos(\frac{\varpi_2}{2})\cos(\frac{3\varpi_2}{2}))e^{-\frac{j3\varpi_2}{2}}$ (c) $G(\varpi_1, \varpi_2) = e^{j\varpi_1} + 1 + e^{-j\varpi_1} = 1 + 2\cos(\varpi_1)$

Assignment #2 Ex.4 Answer

When a real-valued 2-dimensional discrete signal $g(n_1,n_2)$ satisfies that $g(n_1,n_2)=g(-n_1,-n_2)$, show that its discrete spatial Fourier transform (DSFT) $G(w_1,w_2)$ is real-valued.

$$G(\varpi_1, \varpi_2) = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} g(\varpi_1, \varpi_2) e^{-j\varpi_1 n_1} e^{-j\varpi_2 n_2}$$

Assignment #2 Ex.4 Answer

$$\begin{aligned} G(\omega_1, \omega_2) &= \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} g(n_1, n_2) e^{-j\omega_1 n_1} e^{-j\omega_2 n_2} \\ &= g(0, 0) + \sum_{n_1 = 1}^{\infty} g(n_1, 0) (e^{j\omega_1 n_1} + e^{-j\omega_1 n_1}) + \sum_{n_2 = 1}^{\infty} g(0, n_2) (e^{j\omega_2 n_2} + e^{-j\omega_2 n_2}) \\ &+ \sum_{n_1 = 1}^{\infty} \sum_{n_2 = 1}^{\infty} (g(n_1, n_2) (e^{j(\omega_1 n_1 + \omega_2 n_2} + e^{-j(\omega_1 n_1 + \omega_2 n_2})) \\ &+ g(-n_1, n_2) (e^{j(\omega_1 n_1 + \omega_2 n_2} + e^{-j(\omega_1 n_1 + \omega_2 n_2})) \\ &= g(0, 0) + \sum_{n_1 = 1}^{\infty} 2g(n_1, 0) \cos(\omega_1 n_1) + \sum_{n_2 = 1}^{\infty} 2g(0, n_2) \cos(\omega_2 n_2) \\ &+ \sum_{n_1 = 1}^{\infty} \sum_{n_2 = 1}^{\infty} 2(g(n_1, n_2) + g(-n_1, n_2)) \cos(\omega_1 n_1 + \omega_2 n_2)) \end{aligned}$$

Assignment #2 Ex.5 Answer

Consider a 2-dimensional sinusoidal wave $g_a(x,y)=cos(2\pi x + 4\pi y)$. In order to satisfy the sampling theorem, we would like to sample as follows:

 $g(n_1,n_2)=g_a(x,y)|x=n_1T_{S1},y=n_2T_{S2}$. Indicate the conditions for sampling intervals T_{S1} and T_{S2} to be satisfied.

$$F_{s1} = \frac{1}{T_{s1}} > 2$$
 and $F_{s2} = \frac{1}{T_{s2}} > 4$

Fast Fourier Transform (FFT)

• FFT is a fast calculation version of discrete Fourier transform (DFT) .

Discrete Fourier Transform (DFT)

- DSFT with frequency discretization
- In case where $g(n_1, n_2)$ \mathcal{N} is defined in N₁×N₂, a finite domain, i.d. 2-dimensional image.

$$g(n_1, n_2) = \frac{1}{N_1 N_2} \sum_{k_1=0}^{N_1-1} \sum_{k_2=0}^{N_2-1} G(k_1, k_2) W_{N_1}^{-k_1 n_1} W_{N_2}^{-k_2 n_2}$$
$$G(k_1, k_2) = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} g(n_1, n_2) W_{N_1}^{k_1 n_1} W_{N_2}^{k_2 n_2}$$

Where

$$W_{N_1} = e^{-j2\pi/N_1}, W_{N_2} = e^{-j2\pi/N_2}$$

Thus the values of DFT are sampled ones of DSFT obtained by the intervals uniform intervals of spectrum period/N₁ and N₂.

Periodicity of DFT

$$W_N^{nk} = W_N^{n(k+N)} = W_N^{(n+N)k}$$

に注意すると、
 $G(k_1, k_2) = G(k_1 + N_1, k_2)$
 $= G(k_1, k_2 + N_2)$
 $g(n_1, n_2) = g(n_1 + N_1, n_2)$
 $= g(n_1, n_2 + N_2)$

 The number of independent points in both of the spatial and frequency domains is N1×N2 and we assume their periodicity and perform calculations.

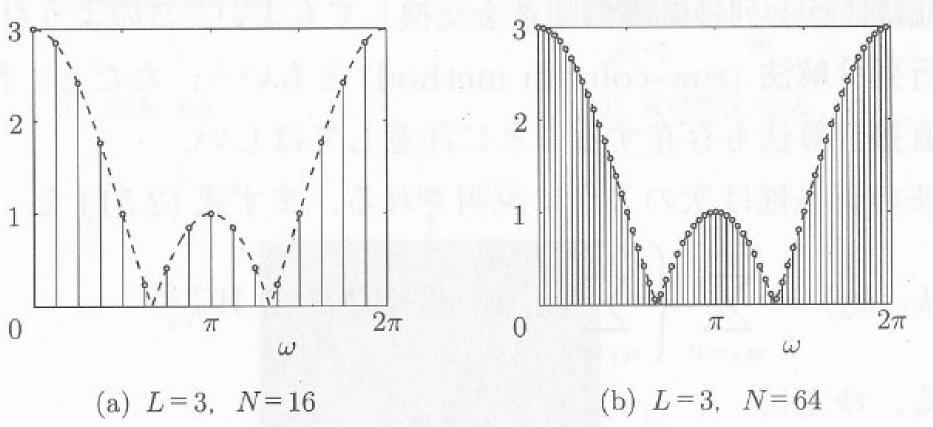
Exercise Example

• 1 dimensional discrete signal of N points

 $g(n) = \begin{cases} 1, n=0\cdots, L-1\\ 0, n=L, L+1, \cdots, N-1 \end{cases}$ を考える.以下の問いに答えよ. (a) L = 3, N = 16 として N 点 DFT を求めよ. (b) L = 3, N = 64 として N 点 DFT を求めよ.

You can use a calculator to calculate amplitude. Since (b) takes long time , please do (a).

Answer



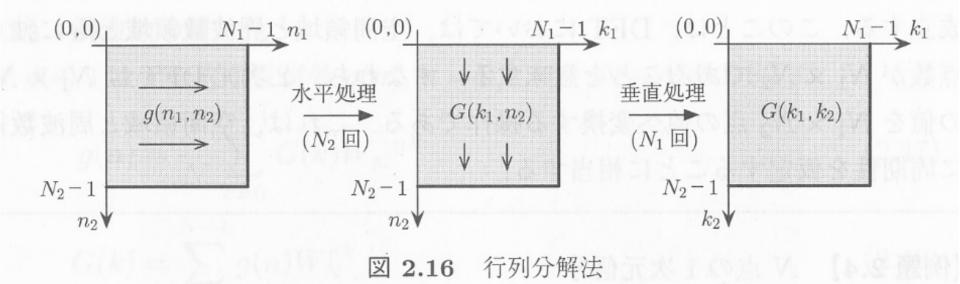
- The larger N, the more sufficient sampling density
- For Fourier image analysis, how to make sure to get sufficient sampling density?

Fast Fourier Transform (FFT)

- FFT is to make DFT (a lot of computational cost) faster.
- Without approximation error, it can perform DFT strictly.
- The method which takes advantage of Matrix decomposition method (decomposability of DFT).

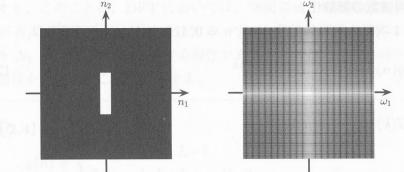
Matrix Decomposition (decomposability of DFT)

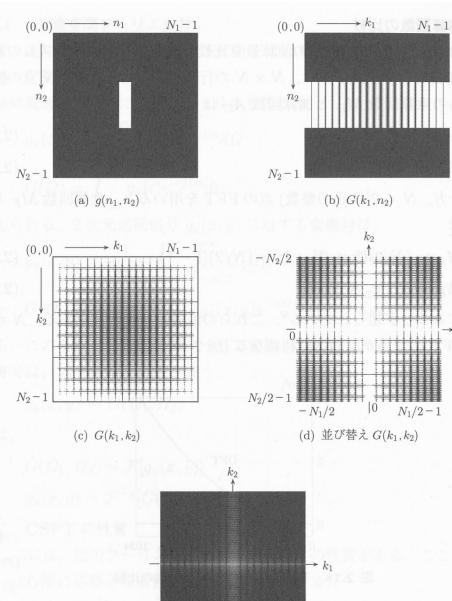
- Direct 2D DFT repeats N1×N2 DFT by N1×N2 times.
- In case of matrix decomposition, for horizontal row data perform N1 1D DFT by N2 times, then for column data perform N2 1D DFT by N1 times.



Example

- (a): 2D image signal
- (b): for (a), perform
 DFT horizontally
- (c): for (b), perform DFT vertically.
- (d): By using the periodicity of DFT, put DC component at the center.





(e) $\log_{10}(|1+G(k_1,k_2)|)$

図 2.17

行列分解法による FFT 計算例

Comparison of Operation Number

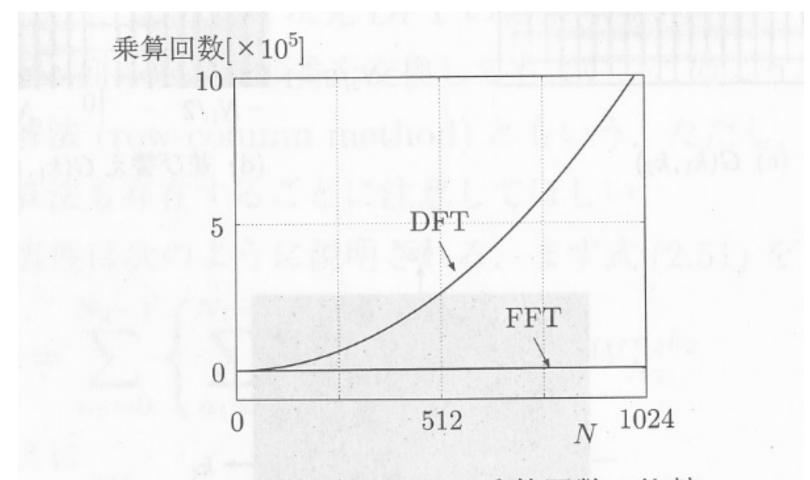


図 2.18 DFT と FFT の乗算回数の比較

Sampling Effect

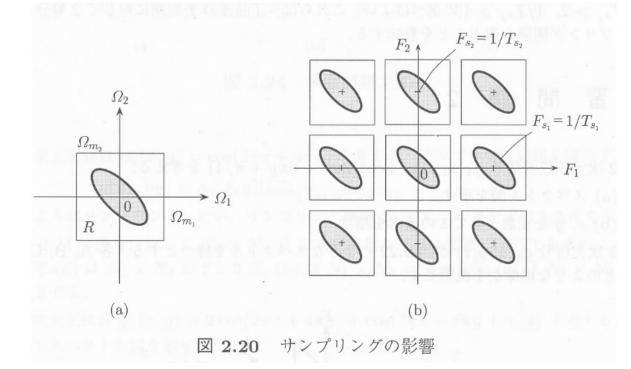
• Sampling generally gives signals distortions (aliasing).

Sampling Theorem

 Theorem that give some condition to avoid the effects of sampling

Sampling Theorem

- Fig.(a): 2D continuous signal's bandwidth is limited by angular frequency $\Omega m1$ and $\Omega m2$. (No signal exists outside of the limited bandwidth.)
- Fig.(b): Assume rectangular sampling, 2D discrete signal has rectangular periodic spectrum.

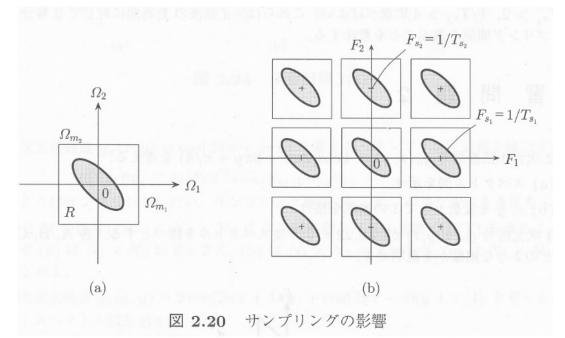


Sampling Theorem

 $F_{s_1} = 1/T_{s_1} > 2F_{m_1}, \text{tr} \supset F_{s_2} = 1/T_{s_2} > 2F_{m_2}$

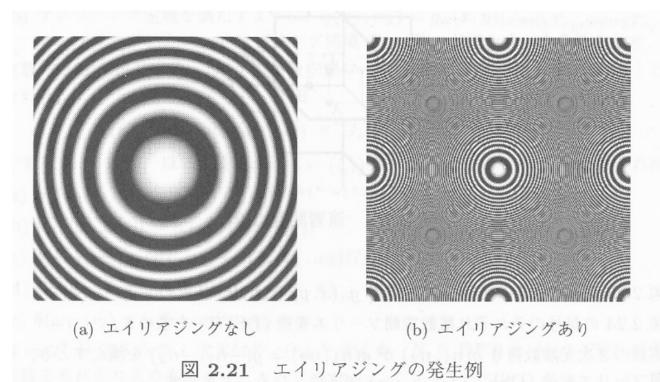
No overlap exists for spectrum.

 Theoretically it is possible to reconstruct perfectly the original signal from sample values by filtering.



折り返し歪み (Aliasing)

 By sampling without keeping sampling theorem, the spectrums overlap and distort the continuous signal. This distortion (overlap of spectrums) is called aliasing.



Example

$$g_a(x, y) = \cos(2\pi x + 4\pi y)$$

Calculate the maximum sapling intervals T_{s1} and T_{s2} to keep the sampling theorem.

Answer

• Since the spatial frequency is 1, 2 respectively in the x and y directions, the minimum sampling frequencies are 2, and 4 and their corresponding sampling intervals T_{s1} and T_{s2} are $\frac{1}{2}$ and $\frac{1}{4}$, respectively.

Basics of Multi-dimensional Filter

- Most of image processing perform filtering to remove or enhance specific frequency components.
- Today we will study about filtering in the spatial domain and frequency domain.

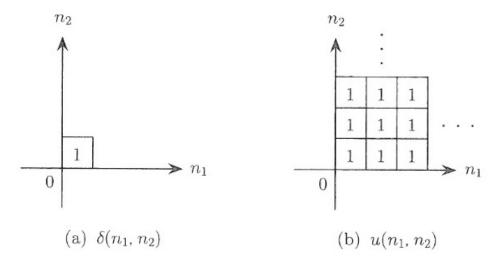
Typical Signals

- 2 D sinusoidal wave signal $g(n_1, n_2) = A \cos(\omega_1 n_1 + \omega_2 n_2 + \theta)$
- 2 D complex sinusoidal wave signal $g(n_1, n_2) = Ae^{j(\omega_1 n_1 + \omega_2 n_2)}$
- 2 D unit sample signal (2D unit impulse) $\delta(n_1, n_2) = \begin{cases} 1, & n_1 = n_2 = 0 \\ 0, & その他 \end{cases}$
- 2 D unit step signal $u(n_1, n_2) = \begin{cases} 1, & n_1 \ge 0 & m \supset n_2 \ge 0\\ 0, & \mathcal{EO} & 0 \end{cases}$

Typical Signals

- 2D unit sample signal (2D impulse signal) $\delta(n_1, n_2) = \begin{cases} 1, & n_1 = n_2 = 0 \\ 0, & その他 \end{cases}$
- 2 D unit step signal

 $u(n_1, n_2) = \begin{cases} 1, & n_1 \ge 0$ かつ $n_2 \ge 0 \\ 0, & その他 \end{cases}$



Continuous Delta Function $\delta(t)$

 $\int_{-\infty}^{\infty} \delta(t) dt = 1 \ \mathfrak{C} \mathfrak{H} \mathfrak{h}, \ \delta(t) = \begin{cases} \infty, t = 0\\ 0, t \neq 0 \end{cases}$

Example

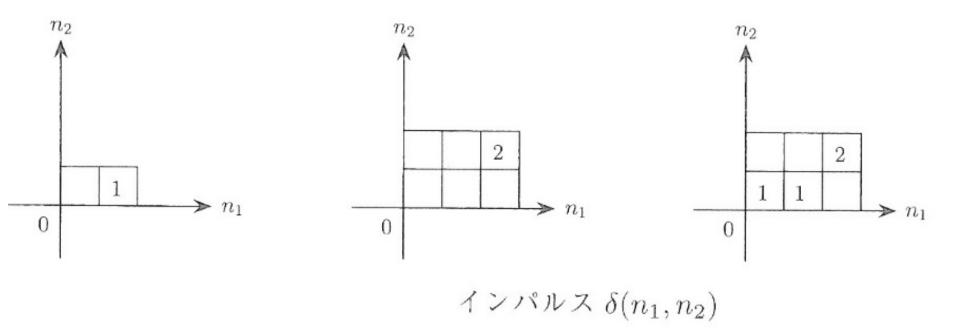
Represent impulse $\delta(n1,n2)$ by 2D unit step signal u(n1,n2).

Answer

 $\delta(n_1, n_2) = u(n_1, n_2) - u(n_1 - 1, n_2) - u(n_1, n_2 - 1) + u(n_1 - 1, n_2 - 1)$

Example : Impulse Signal

- 2D image is a set of 2D impulse signals.
- Represent the following 2D images by using impulse $\delta(n_1, n_2)$.



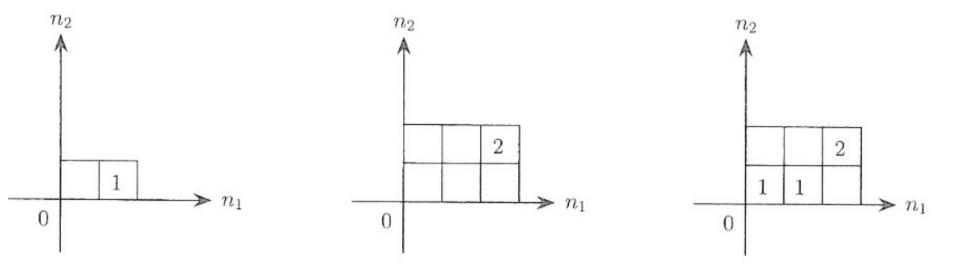
Answers

$$g_1(n_1, n_2) = \delta(n_1 - 1, n_2)$$

$$g_2(n_1, n_2) = 2\delta(n_1 - 2, n_2 - 1)$$

$$a(n_1, n_2) = \delta(n_1 - n_2) + \delta(n_1 - 1, n_2) + 2\delta(n_1 - 2, n_2 - 1)$$

$$g(n_1, n_2) = \delta(n_1, n_2) + \delta(n_1 - 1, n_2) + 2\delta(n_1 - 2, n_2 - 1)$$



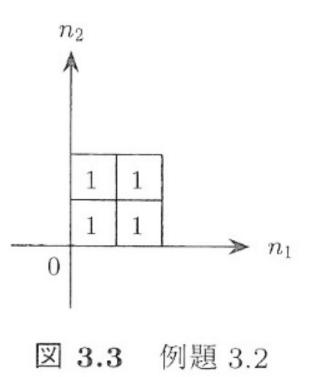
Representation of 2D Image by Impulse

• By generalization,

$$g(n_1, n_2) = \sum_{k_1 = -\infty}^{\infty} \sum_{k_2 = -\infty}^{\infty} g(k_1, k_2) \delta(n_1 - k_1, n_2 - k_2)$$

Example Exercise

【例題 3.2】 図 3.3 の信号をインパルスを用いて表せ.



Answer

 $g(n_1, n_2) = \delta(n_1, n_2) + \delta(n_1 - 1, n_2) + \delta(n_1, n_2 - 1) + \delta(n_1 - 1, n_2 - 1)$

Exercise Example

What is the signal given by $g(n_1,n_2) = \sum_{k_1=0}^{\infty} \sum_{k_2}^{\infty} \delta(n_1 - k_1, n_2 - k_2)?$

Answer

2D unit step signal u(n1,n2)

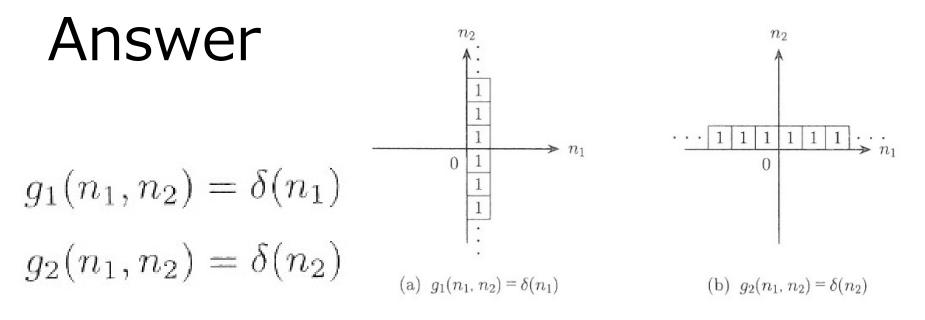
Separability of Signal

- If a 2D signal is represented by a product of two 1D signals, it is called a separable signal.
- If not, it is called a non-separable signal.

$$g(n_1, n_2) = g_1(n_1)g_2(n_2)$$

Example : Separability of Signal

- Most general signal is non-separable.
- Are 2D unit impulse signal and 2D unit steps signal separable?



See the left figure. Hence, $\delta(n_1, n_2) = \delta(n_1)\delta(n_2)$

2D unit step signal is also separable.

Example

• Is the signal in Fig. 3.5 separable or non-separable?

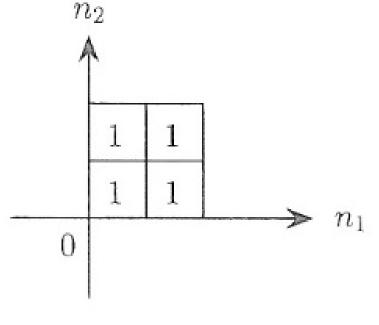


図 3.5 例題 3.4

Answer

$$g_1(n_1) = \begin{cases} 1, & n_1 = 0, 1\\ 0, & \mathcal{E} \mathcal{O} 他 \end{cases} \qquad g_2(n_2) = \begin{cases} 1, & n_2 = 0, 1\\ 0, & \mathcal{E} \mathcal{O} \end{pmatrix} \\ 0, & \mathcal{E} \mathcal{O} \end{pmatrix}$$
とすると, $g(n_1, n_2) = g_1(n_1)g_2(n_2)$ と表現される.