Advanced Information Engineering

#1 October 5, 2020 (Mon.) Kenjiro T. Miura

Contact information

•Name	Kenjiro T. Miura
•Office	Eng. #1 build. Room #210
•Mail address	miura.kenjiro@shizuoka.ac.jp
•Home page	https://mc2-lab.com
•Tel·Fax 053-47	78-1074

Study Contents

• Digital Image Processing and its applications

Objective of the course

 Learn the basic principles of digital image processing

Questionnaire

- Studying on image processing or its applications
- Have learned about image processing (signal processing)
- Novice, but is interested in image processing
- Others

Lecture Plan #1

- 10/12 (M) Digital Image Processing #1
- 10/19 (M) Digital Image Processing #2+Exercises
- 10/26 (M) Digital Image Processing Demo+Answers
- 11/2 (M) Frequency of Image Signals #1
- 11/9 (M) Frequency of Image Signals #2+Exercises
- 11/16 (M) Fourier Trans. Demo+Answers
- 11/30 (M) Multi-dimensional Filter #1

Lecture Plan #2

- 12/7 (M) Multi-dimensional Filter #2+Exercises
- 12/14 (M) Multi-dimensional Filter Demo + Answers
- 12/21 (M) Enhancement of Images + Exercises
- 01/4 (M) Enhancement of Images + Answers
- 01/18 (M) Geometric Transformation of Images
- 01/25 (M) Applications to Scientific Measurements
- 02/1 (M) Signal Processing in Geometric Modeling

Lecture Styles

- PPT (Q&A anytime, examples)
- PPT print outs, hand out exercises
- Demo with MATLAB

Grading

- Attendance rate
- Performance of exercises

Others

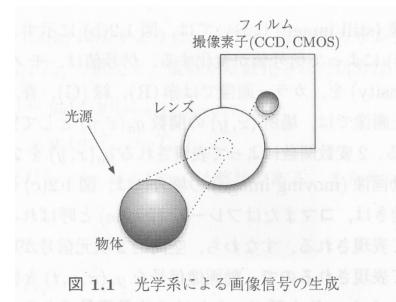
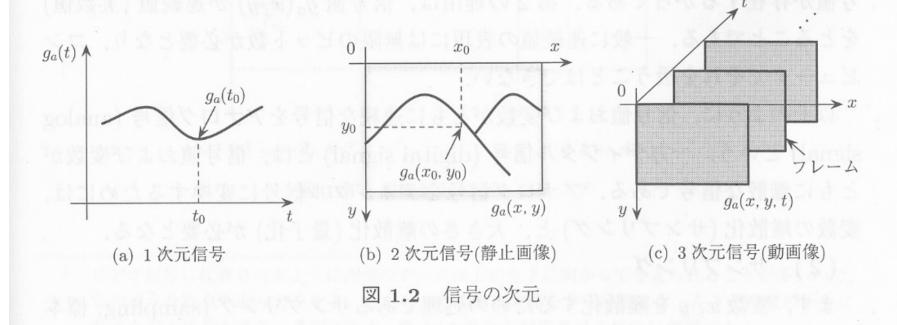

- Questions
- Request

Image Signals

 Image information, in many cases, is transformed to electrical signals or numerical values and is treated as image signals.


Generation of Image Signals

- Light is reflected on subjects.
- Reflected light is refracted and imaged.
- Image signals are recorded on photoreceptor as film, or transformed to electrical signals by imaging devices.

Dimension of Signals

- Signals, whose typical example is sound, is a function of time g_a(t) of one dimensional signal.
- Still image is two dimensional signals and has various values at spacial position (x,y).

Digital Image

- Images taken by a digital camera are digital images and they are recorded as digital signals.
- Image processing processes digital signals by computers.

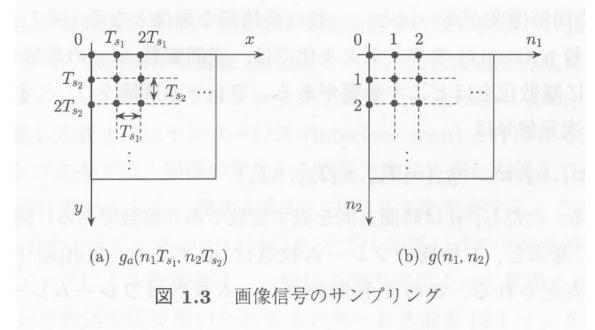
Analog Image Signals

- Intensities of film photo are analog signals and are given by two dimensional signal g_a(x,y).
- Variables x and y are continuous(real numbers) and pixel which is a discrete space point is not defined.
- Signal values g_a(x,y) are continuous (real values) and are not handled by computers because continuous values need infinite number of bits.

Digital Image Signals

- Image signals whose signals themselves g(x,y) and variables x, y are discrete.
- In order to convert analog signals to digital signals, it is necessary to discretize variables (sampling) and signals (quantization).

Sampling


- Process to discretize variables x and y.
- Let T_{s1} , T_{s2} be sampling intervals in x and y directions, respectively. The signal is given by

$$g(n_1, n_2) = g_a(x, y)|_{x=n_1 T_{s_1}, y=n_2 T_{s_2}}$$
$$= g_a(n_1 T_{s_1}, n_2 T_{s_2})$$

- n₁, n₂ are integers and reciprocals of sampling intervals Ts1, Ts2 are horizontal and vertical sampling frequencies.
- A sample point in space is a pixel and its signal value is a pixel value.

Rectangular Sampling

- It is commonly used because of simpleness of output devices and processing.
- The top-left corner is the image origin (0,0) and n₁ and n₂ are variables in the horizontal and vertical directions.

Spatial Resolution of Image

- For a digital image, let N₁, and N₂ be pixel numbers in the horizontal and vertical axes. Its space resolution is given by N₁×N₂.
- Higher space resolution, higher-definition
- VGA, HD, 4K ?

(b) 128×128

(c) 64×64

図 1.4 解像度の異なる画像例

Digitization of Video Image Signal g_a(x,y,t)

• Discretize time variable t by frame interval Ts.

 $g(n_1, n_2, n) = g_a(n_1 T_{s_1}, n_2 T_{s_2}, n T_s)$

- n is a variable for time elapse and is an integer.
- For example if $T_s = 1/30[sec]$, the frame rate, which corresponds to time resolution is 30fps.
- Fs, the reciprocal of Ts Fs is called time sampling frequency.

Sample Exercise

• Let's think about two one-dimensional time signals of frequency F=1[Hz] and F'=5[Hz], g_a(t)=cos(2π t) and g_a(t)=cos(10π t). Please illustrate discrete signals obtained by sampling these signals with sampling interval T_s=1/F_s=1/4[sec].

Answers

- Their sampled values are the same.
- Sampling time t=nTs, and g(n)=cos(π n/2)=cos(2π + π n/2)=g'(n)
- Generally when F'=F+kF_s (k is an integer), both of the sampled values become identical.

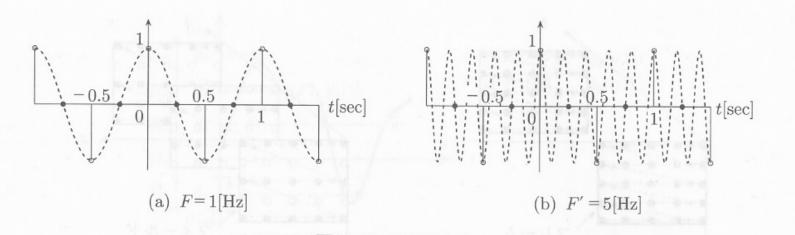
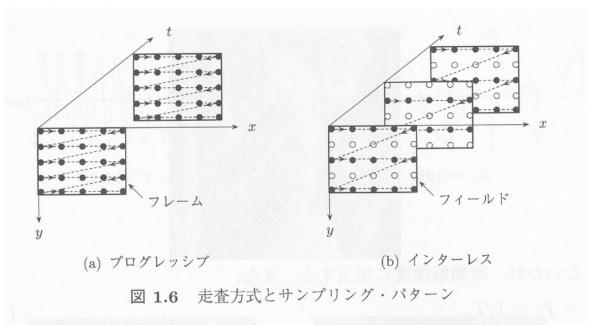



図 1.5 例題 1.2

Process to transform multi-dimensional signals to one dimensional signals.

- TV broadcasting uses interlace scan and movie files do progressive scan.
- Prioritize time resolution or space resolution?

Summary

- Contents of course
- Image signals
 - Analog image
 - Digital image
- Sampling and quantization