Advanced Information Engineering

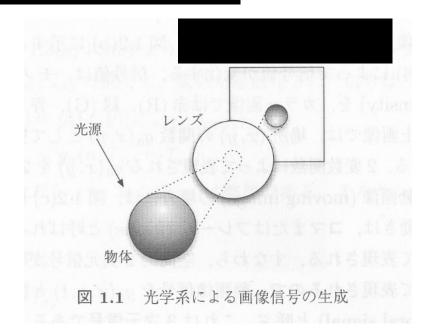
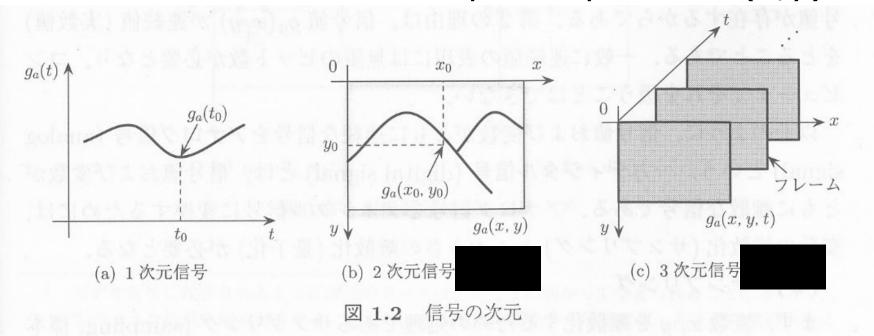

#2 October 24 (Mon), 2022 Kenjiro T. Miura

Image Signals

• Image information, in many cases, is transformed to and is treated as image signals.


Generation of Image Signals

- Light is reflected on subjects.
- Reflected light is
- Image signals are recorded on , or transformed to electrical signals by

Dimension of Signals

- Signals, whose typical example is _____, is a function of time g_a(t) of one dimensional signal.
- is two dimensional signals and has various values at spacial position (x,y).

Digital Image

- Images taken by a digital camera are digital images and they are recorded as digital signals.
- Image processing processes digital signals by computers.

Analog Image Signals

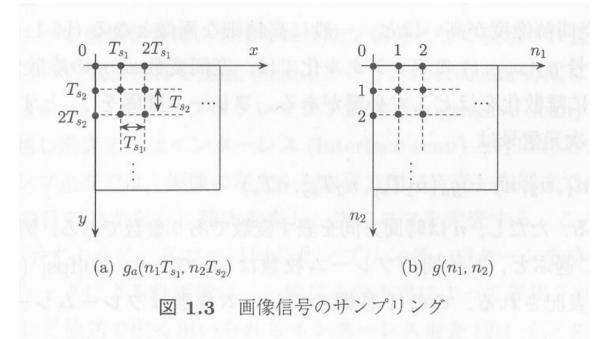
- Intensities of are analog signals and are given by two dimensional signal $g_a(x,y)$.
- Variables x and y are and which is a discrete space point is not defined.
- Signal values g_a(x,y) are and are not handled by computers because continuous values need infinite number of bits.

Digital Image Signals

- Image signals whose signals themselves g(x,y) and variables x, y are discrete.
- In order to convert analog signals to digital signals, it is necessary to discretize variables and signals

Sampling

- Process to discretize variables x and y.
- Let T_{s1} , T_{s2} be sampling intervals in x and y directions, respectively. The signal is given by


$$g(n_1, n_2) = g_a(x, y)|_{x=n_1 T_{s_1}, y=n_2 T_{s_2}}$$

$$= g_a(n_1 T_{s_1}, n_2 T_{s_2})$$

- n₁, n₂ are integers and reciprocals of sampling intervals Ts1, Ts2 are horizontal and vertical
- A sample point in space is a signal value is

Sampling

- It is commonly used because of simpleness of output devices and processing.
- The top-left corner is the image origin (0,0) and n₁ and n₂ are variables in the horizontal and vertical directions.

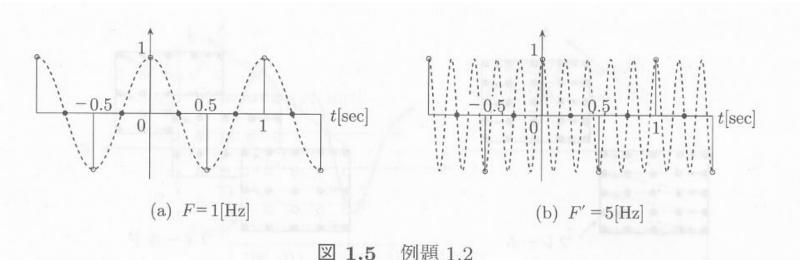
of Image

- For a digital image, let N₁, and N₂ be pixel numbers in the horizontal and vertical axes. Its space resolution is given by N₁×N₂.
- Higher space resolution, higher-definition
- VGA, HD, 4K?

Digitization of Video Image Signal ga(x,y,t)

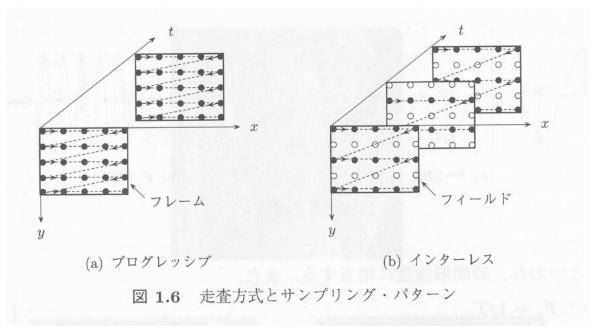
• Discretize time variable t by frame interval T_s.

$$g(n_1, n_2, n) = g_a(n_1 T_{s_1}, n_2 T_{s_2}, n T_s)$$


- n is a variable for time elapse and is an integer.
- For example if $T_s = 1/30[sec]$, which corresponds to time resolution is 30fps.
- Fs, the reciprocal of Ts Fs is called time sampling frequency.

Sample Exercise

• Let's think about two one-dimensional time signals of frequency F=1[Hz] and F'=5[Hz], $g_a(t)=\cos(\frac{1}{2}t)$ and $g_a(t)=\cos(\frac{1}{2}t)$. Please illustrate discrete signals obtained by sampling these signals with sampling interval $T_s=1/F_s=1/4[sec]$.


Answers

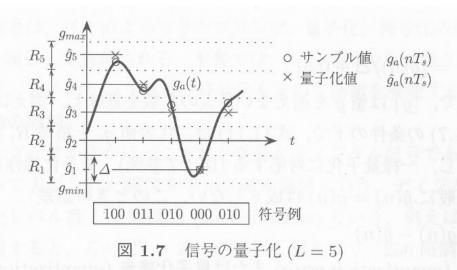
- Their sampled values are the same.
- Sampling time $t=nT_s$, and $g(n)=cos(\pi n/2)=cos(2\pi + \pi n/2)=g'(n)$
- Generally when F'=F+kF₅ (k is an integer), both of the sampled values become identical.

(走査)

Process to transform multi-dimensional signals to one dimensional signals.

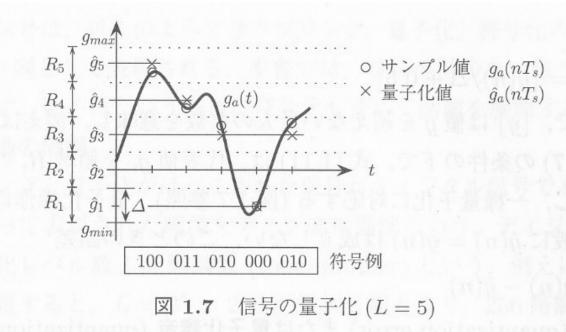
- TV broadcasting uses and movie files do .
- Prioritize time resolution or space resolution?

Digital Image Signal (review)

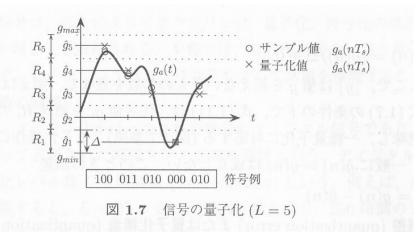

- Image signal g(x, y) and variables x, y are discrete.
- To convert analogue signal to digital signal, discretization of variables () and that of image signal () are necessary.

量子化(

 Because analog signal are real numbers and infinite, for quantization, for example with 8 bits it must be replaced with values L=28=256.


 Quantization means that values of some number are replaced with other values of

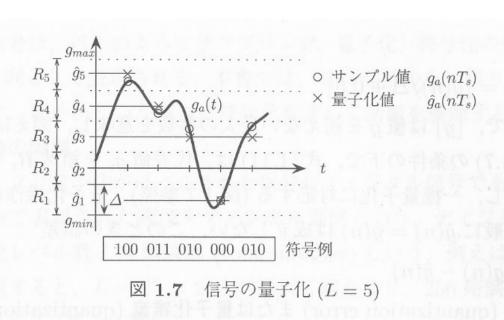
smaller number.


量子化(quantization)

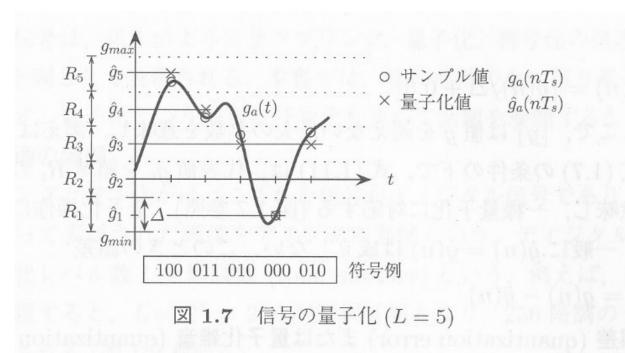
- L is called quantization level or quantization step number.
- The difference between maximum and minimum values g_{max} - g_{min} is called

量子化(quantization)

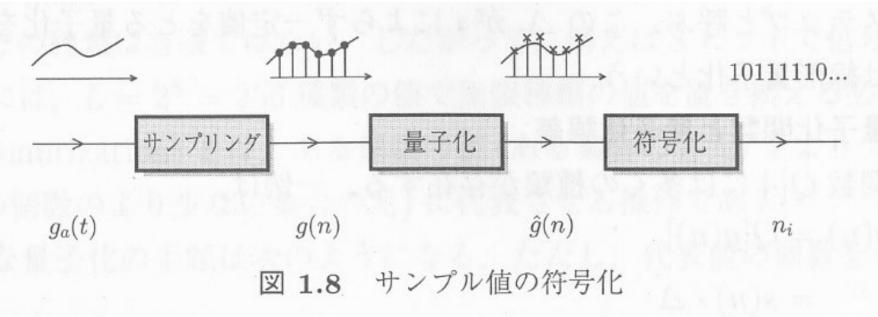
- By quantization step number L and dynamic range g_{max} g_{min},
 quantization step Δ=(g_{max} g_{min})/L
 If Δ dose not depend on the index, it is called uniform quantization.
- In case where a sample number is a neighborhood of a representative value, it is regarded as quantization value.



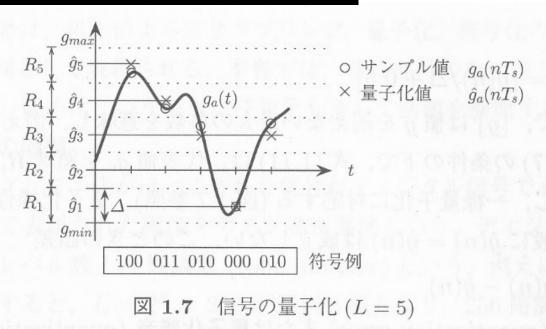
量子化誤差(quantization


- The difference between a sample value and its quantization value is called quantization or quantization noise.
- The range of quantization error e is given with quantization step Δ by

$$-\Delta/2 \le e < \Delta/2$$


量子化誤差(quantization error)

• It is possible to make quantization error smaller by are needed.


Encoding

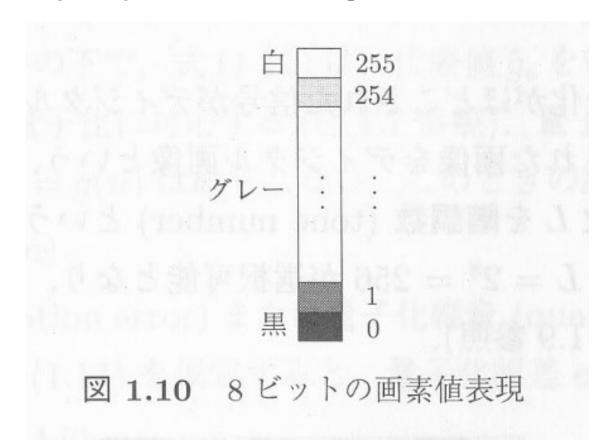
 Process where signal values quantized with quantization level L are assigned to integer index n_i (i=1,2,···,L) which are one to one correspondent with the signal values.

符号化(

- In case where L=5, are used for encoding.
- Encoding with _____ is given as binary numbers by

Digital Image

• The digital signal is an analog signal modified by and the image represented by a digital signal is called digital image.


Tone of Image

- For the digital image, quantization level number is called tone.
- What is the tone of 16-bit image?

画像の階調()

 The pixel value of a digital image is generally a positive integer.

Bit-rate

- Transmission velocity of data transmission
- Its unit is bps.
- The bit-rate B_r is given by

$$B_r = N_1 \times N_2 \times F_s \times I$$

for a gray-scale video with spatial resolution $N_1 \times N_2$, frame-rate F_s , tone $L=2^1$.

• For color video, its bit-rate is 3 times larger.

Exercise #1

• Assume that we use uniform quantization and a sample value g(n)=7. Quantize the value with quantization step $\Delta=5$ and $\Delta=2$, respectively. Note that we are supposed to use rounding (四捨五入). Calculate quantization value and quantization value.

Answer

- When quantization step Δ =5, quantization value = 5, quantization error = 2.
- When quantization step Δ =2, quantization value = 8, quantization error -1.

Exercise #2

 We would like to quantize a signal whose dynamic range g_{max} - g_{min} = 10 and make quantization error be less than or equal to ½. How many bits are necessary to encode quantization values?

Answer

The range of quantization error

$$-\Delta/2 \le e < \Delta/2$$

- Hence quantization step Δ should be $\frac{1}{2}$.
- Then quantization step number L=10/(1/2)=20.
- Since L=20≤2⁵, 5 bits are necessary.

Exercise #3

• Calculate bit-rate B_r for color video with its spacial resolution 1000×1000, frame-rate 30 fps, 8-bit tone. If necessary, please use K (kilo), M (mega), G (giga).

Answer

• $B_r = 1000 \times 1000 \times 30 \times 8 \times 3 = 720$ [Mbps]