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Abstract

The curve is the most basic design element to de-
termine shapes and silhouettes of industrial prod-
ucts and works for shape designers and it is in-
evitable for them to make it aesthetic and attrac-
tive to improve the total quality of the shape de-
sign. If we can find equations of the aesthetic
curves, it is expected that the quality of the curve
design improves drastically because we can use
them as standards to generate, evaluate, and de-
form the curves. The authors have proposed the
general equations of aesthetic curves as such a
standard.

However the aesthetic curves expressed by the
general equations are limited to planar curves.
Hence in this paper，at first we show the neces-
sary and sufficient condition for a given curve to
have the self-affinity and then extend the aesthetic
curves into 3-dimensional space.
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1 Introduction

“Aestehtic curves” were proposed by Harada et
al. [1] as such curves whose logarithmic distribu-
tion diagram of curvature is approximated by a
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Figure 1: Aesthetic plane curves with various α(γ)
values

straight line. Miura [2, 3] derived analytical solu-
tions of the curves whose LDDC are strictly given
by a straight line and proposed these lines as gen-
eral equations of aesthetic curves. Furthermore,
Yoshida and Saito [4] analyzed the properties of
the curves expressed by the general equations and
developed a new method to interactively generate
a curve by specifying two end points and the tan-
gent vectors there with three control points as well
as α: the slope of the straight line of the LDDC. In
this research, we call the curves expressed by the
general equations of aesthetic curves the aesthetic
curves.

The aesthetic curves include the logarithmic



(equiangular) curve (α = 1), the clothoid curve
(α = −1) and the involute curve (α = 2). It is pos-
sible to generate and deform the aesthetic curve
even if they are expressed by integral forms using
their unit tangent vectors as integrands (α 6= 1, 2)
and they are expected to be used in practical ap-
plications. However, they are planar and it is
not possible to represent spacial curves. There-
fore, in this paper, at first we will show the neces-
sary and sufficient condition for planar curves to
have self-affinity and extend the aesthetic curves
into 3-dimensional space with guaranteeing self-
affinity. We call the derived curve the aesthetic
space curve.

2 Aesthetic plane curve

In this reseach, we define the aesthetic curve as
the curve whose logarithmic distribution diagram
of curvature is stricly expressed by a straight line.

2.1 General equations of aesthetic
curves

For a given aesthetic curve we assume that the
arc length of the curve is given by s and the
radius of curvature ρ, the horizontal axis of
the LDDC measures log ρ and the vertivcal axis
log(ds/d(log ρ)) = log(ρ ds/dρ)．Since its LDDC
is given by a straight line, there exists some con-
stant α and the folloing equation is satisfied:

log(ρ
ds

dρ
) = α log ρ + C (1)

where C is a constant．We call this the fundamen-
tal equation of aesthetic curves. ．Rewrite Eq.(1)
and it becomes

1
ρα−1

ds

dρ
= eC = C0 (2)

Hence there is some constant c0 such that

ρα−1 dρ

ds
= c0 (3)

Figure 1 shows several aesthetic plance curves
with various α values.

2.2 Self-affinity of the plane curves

We define self-affinity of the plane curve as fol-
lows [3]. Self-affinity of the plane curve: For

a curve generated by removing arbitrary head por-
tion of the original curve, by scaling it with dif-
ferent factors in its tangent and normal directions
on every point on the curve, if the original curve
is obtained, then the curve has self-affinity.

If a given plane curve satisfys Eq.(3), the curve
has self-similarity of this definition [2].

2.3 A necessary and sufficient condi-
tion for self-affinity

For a given curve C(s) parametrerized by the arc
length parameter s ≥ 0, we assume the derivative
of its curvature, hence that of its radius of cur-
vature as well are continuous. I other words, we
assume the curve has C3 continuity. In addition,
the radius of curvature ρ(s) is assumed not to be
equal to 0.

By scaling the curve with different factors in
the tangent and normal directions (affine trans-
formation of the plane curve [3]), we think about
how to make the scaled curve become congruent
with the original curve. We therefore reparame-
terize the given curve C(s) using a new parameter
t = as + b where a and b are positive constants as
shown in Fig.2.3. To scale the curve uniformly
in the tangent direction is equivalent to relate a
point C(t0 = as0 + b) to another point C(s0) as
shown in Fig.2.3. In this relationship the scaling
factor in the tangent direction ft is given by 1/a.

Although a and b are constants, they are re-
lated to the scaling facotors in the tangent and
normal directions ft and fn and they depends on
the shape of the curve. Hence we can not specify
them independently.

The start point of the curve C(t) is given by
C(b) that is a point when s = 0. Hence C(t) is
a curve without the head porition of the origianl
curve C(s).

The condition can be described for a curve to
have self-affinity by the following. Condition for
a plane curve to have self-affinity: For an
aribitray constant b > 0, some a > 0 is deter-
mined. With these a amd b, for any s ≥ 0 the
following equation is satisfied.

ρ(s)
ρ(as + b)

= fn (4)

where fn is a constant dependent on and deter-
mined by b and it is a scaling factor in the normal
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Figure 2: Correspondence of the reparameterized
and original curves

direction. fn is given by substituing s = 0 in the
above equation as follows:

fn =
ρ(0)
ρ(b)

(5)

2.3.1 In case of fn = 1

To make the following arguments simpler, at first
we discuss the case where fn = 1．From Eq.(4)，

ρ(s) = ρ(as + b) (6)

By the lemma in the appendix, ρ(s) turns out to
be constant and the curve is given by an arc or a
straight line (ρ(s) = ∞)．

In what follows, fn 6= 1 is assumed. By rewrit-
ing Eq.(4)，

ρ(s)− fn ρ(as + b) = 0 (7)

Since the radius of curvature ρ(s) is differentiable，

dρ(s)
ds

− a fn
dρ(t)
dt

∣∣∣∣
t=as+b

=
dρ(s)
ds

− fn

ft

dρ(t)
dt

∣∣∣∣
t=as+b

= 0 (8)

By substituting 0 for s and rewriting the above
equation,

ft = fn

dρ(b)
dt

dρ(0)
ds

(9)

Hence as Eq.(5) is satisfied, both fn and ft are
determined uniquely by the values of the radius of
curvature and its derivative at the start point of
the curve1．

1From a = 1/ft，a is also uniquely determined by b.

2.3.2 In case of fn/ft = 1

First, for some b > 0, if fn/ft = 1，by the similar
arguments to subsection 2.3.4, for an arbitrary b,
fn/ft is equal to 1. Then

dρ(s)
ds

=
dρ(t)
dt

∣∣∣∣
t=as+b

(10)

From this equation and the lemma,

dρ(s)
ds

= c0 (11)

c0 is constant and by integrating the above equa-
jtion，

ρ(s) = c0 s + c1 (12)

where c1 is a constant of integration. Eq.(12) rep-
resents the relationship between the radius of cur-
vature and the arc length of the logarithmic spiral
and the curva has a special self-affinity, i.e., self-
similarity where ft is equal to fn.

2.3.3 In case of fn/ft 6= 1

Next, if fn/ft 6= 1, since fn 6= 1，there is some α
such that

fn

ft
= f1−α

n (13)

Then

dρ(s)
ds

= f1−α
n

dρ(t)
dt

∣∣∣∣
t=as+b

dρ(s)
ds

=
{

ρ(s)
ρ(as + b)

}1−α dρ(t)
dt

∣∣∣∣
t=as+b

(14)

Hence

ρ(s)α−1 dρ(s)
ds

= ρ(as + b)α−1 dρ(t)
dt

∣∣∣∣
t=as+b

(15)

Threfore, if α is independent from b，from the
lemma, we obtain the following equation equiva-
lent to Eq.(3)．

ρ(s)α−1 dρ(s)
ds

= c0 (16)

where c0 is a constant．By integrating the above
equation，the first and second general equations
are derived [2]．



2.3.4 Independence of α from b

In this subsection, we will prove that α is indepen-
dent from b．Here we think about the case where
b is small enough and let it to be ∆b > 0．Let
a to be 1 + ∆a or 1 − ∆a，(∆a > 0) depending
on and uniquely determined by ∆b. We relax the
condition that b is positive and think about the
case where b = 0 and let ∆b is equal to 0. Then
Eq.(4) relates itself. Hence a = 1, or ∆a = 0．
Then fn = 1．For the curve without the portion
corresponding the domain 0 ≤ s < ∆b, Eq.(4)
is satisfied and from Eq.(13)，there exists α such
that

ρ(s)
ρ((1±∆a)s + ∆b)

= fn =
{

fn

ft

}1−α

(17)

a is a continuous function of b and we can make
the value of ∆a smaller without limit if we make
∆b smaller.

In Eq.(4)，by substituting (1±∆a)s+∆b for s
repeatedly，

fn =
ρ(s)

ρ((1±∆a)s + ∆b)

fn =
ρ((1±∆a)s + ∆b)

ρ((1±∆a)2 s + ∆b((1±∆a) + 1))
· · ·

fn =
ρ((1±∆a)m−1s + · · ·+ 1))
ρ((1±∆a)m s + · · ·+ 1))

where ± is appropriately selected for the given
curve to satisfy ∆a > 0．From these equations,

ρ(s)
ρ((1±∆a)m s + ∆b((1±∆a)m−1 + · · ·+ 1))

= fm
n

Hence the scaling factor in the tangent direction
for b = ∆b((1 ± ∆a)m−1 + · · · + 1) is equal to
1/(1±∆a)m = fm

t and

fm
n =

{
fm

n

fm
t

}1−α

(18)

Therefore α is equal to that for ∆b．
We will prove that α is constant by contradic-

tion．From Eq.(13), α is expressed by a continuous
function of b and α = α(b)．For some b0 > ∆b > 0,
α0 = α(b0) and we assume that α0 is different from
α = α(∆b). For a positive small ε，we furthermore
assume that

|α0 − α| > 2ε (19)

Since α(b) is a continuous function，there exists
some δ such that for any b > 0 satisfying |b0−b| <
δ

|α(b0)− α(b)| < ε (20)

As ∆a is small, 1±∆a > 0 and ∆b((1±∆a)m−1 +
· · ·+1)) increases monotonously from ∆b and can
becomes larger than any value by increasing m．
Hence there exists m such that

bl = ∆b((1±∆a)m−1 + · · ·+ 1)) < b0

< bu = ∆b((1±∆a)m + · · ·+ 1)) (21)

Since bu − bl = ∆b(1±∆a)m, if

∆b(1±∆a)m < 2δ (22)

we get |b0 − bl| < δ or |b0 − bu| < δ．Eq.(22) can
be rewritten into 1 ± ∆a < (2δ/∆b)

1
m and ∆a

becomes smaller if we make ∆b smaller and there
exists ∆b satisfying this equation．Hence Eq.(20)
is satisfied and contradicts (19). Therefore α is
constant for any b．

To sum up the results of the above discussions,
a necessary and sufficient condition for the plane
cuve to have self-affinity is that for some constant
α, Eq.(16) is satisfied. When α = 1, Eq.(16)
becomes Eq.(11) and it icludes the case of self-
similarity.

2.4 Self-affinity ratio

α is a slope of the graph of logarithmic distribu-
tion diagram of curvature and as discussed in the
previous section it has relationship with the scal-
ing factors in the tangent and normal directions
ft, fn. It characterizes the curve．From Eq.(13),
let γ to be the reciprocal of α. Then

γ =
1
α

=
log fn

log ft
(23)

This means fn = fγ
t .

For fractals who has self-similarity，as a mea-
sure to represent their dimensions similarity di-
mension is defined as follows [5]．When the whole
figure consists of similar figures of number 1/b
scaled by 1/a，b = aD and similarity dimension is
given by

D =
log b

log a
(24)



Eq.(23) is similar to the above definition and
Eq.(23) can be interpreted that it is necessary to
have curves of number fn to fill up the space in
the normal direction if we scale the curve by 1/ft.
γ can be interpreted as a dimension and we call it
self-affinity ratio．

3 Extension into 3-dimensional
space

The aesthetic curve proposed so far is a plane
curve and we extend it into 3-dimensional space
by using the Frenet-Serret formula (for example,
see [6]).

3.1 The Frenet-Serret formula

For a space curve C(s) parameterized by s, let its
unit tangent vector to be t，unit principal normal
vector n，and unit binormal vectorb．These vec-
tors are related by the Frenet-Serret formula as
follows:

dC(s)
ds

= t,
dt

ds
= κn,

dn

ds
= −κt + τb,

db

ds
= −τn (25)

where κ and τ are the curvature and torsion, re-
spectively.

The plane curve has a constant binormal vector
and its torsion remains 0. But we have to consider
its change for the space curve. Hence first, we
define self-affinity of the space curve and next we
define the aesthetic space curve as the curve who
has self-affinity.

Similar to self-affinity of the plane curve, we de-
fine self-affinity of the space curve as follows. Self-
affinity of the space curve: For a curve gen-
erated by removing arbitrary head portion of the
original curve, by scaling it with different factors
in its tangent, principal normal and binormal di-
rections on every point on the curve, if the original
curve is obtained, then the curve has self-affinity.

Since the curvature and torsion, or their recipro-
cals: the radius of curvature and radius of torsion
can be independently specified, With respect to
the radius of torsio µ = 1/τ，we assume that an
equation similar to Eq.(1) is satisfied as follows:

log(µ
ds

dµ
) = β log µ + C ′ (26)

where β is a constant．Then

µβ−1 dµ

ds
= c1 (27)

Arguments similar to those where that subsec-
tion 2.3 has showed that a sufficient and necessary
condition to have self-affinity of the plane curve
is expressed by Eq.(3) can show that a sufficient
and necessary condition to have self-affinity of the
space curve is expressed by Eqs.(3) and (27)．

The Frenet-Serret formula can be considered to
be simultanious differential equations and an ex-
ample calculated by their numerial integration is
shown in Fig.3．The left and right figures shows
the same five curves from different viewpoints and
the curve drawn at the bottoms is identical to a
logarithmic spiral whose torsion is always 0 and
radius of curvature is given by a linear function of
the arc length. The other curves have the same
start point and radius of curvature as the loga-
rithmic spiral and their torsion is given by a lin-
ear function of the arc length with β = 1. The
upper curves have smaller coefficient of the linear
function for the arc length (larger torsion). For
each curve, at the start and end points, and two
points on the curve, we draw the tangent, prin-
cipal normal and binormal vectors of the moving
frame (Frenet frame) as short slim cyliders.

4 Conclusions

In this research, we have derived sufficient and
necessary conditions for the plane curve and the
space curve to have self-affinity and extended the
aesthetic plane curve into 3-dimensional space
with self-affinity based on the Frenet-Serret for-
mula and derived the aesthetic space curve. For
the aesthetic space curve, the radius of torsion,
i.e., the reciprocal of torsion to the power of some
constant is given by a linear function of the arc
length similar to the radius of curvature. We guar-
antee self-affinity of the aesthetic space curve.

For future work, we are planning an automatic
classification of curves: 1) determine the rhythm
to be simple(monotonic) or complex(consisting of
plural rhythms), 2) calculate the slope of the line
approximating the LDDC graph. We think there
are a lot of possibilities to use the general aes-
thetic equations to many applications in the fields



Figure 3: Examples of the aesthetic space curve

of computer aided geometric design. For exam-
ple, we may be able to apply the equations to de-
form curves to change their impressions, say, from
sharp to stable. Another example is smoothing
for reverse engineering. Even if only noisy data of
curves are available, we may be able to use the
equations as kinds of rulers to smooth out the
data and yield aesthetically high quality curves.
We will develop a CAD system using the aesthetic
plane and space curves.
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Appendix

A Lemma

Here a function f(s) patameterized by s is given.
For an arbitrary constant b > 0, a > 0 is deter-
mined by b. With these a and b, if for any s ≥ 0
the following equation is assumed to be satisfied.

f(a s + b) = f(s) (28)

Then the function f(s) is always constant．
Proof: Assume the function f(s) is not con-

stant．Then there exists such s0 > 0 that

f(s0) 6= f(0) (29)

If b = s0，for some a0 > 0,

f(a0 s + s0) = f(s) (30)

By substituting 0 for sに 0, f(s0) = f(0) is ob-
tained and that contradicts Eq.(29)．Therefore,
f(s) is constant2.

2The lemma means that for an arbitrary b > 0, a =
a(b) > 0，when the given function is scaled by a about the
origin and is translated by b, if the function is congruent
with the original function, then the funtion is constant.


