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Adopting a recurrence technique, generalized trigonometric basis (or GT-basis, for short) functions along with two shape
parameters are formulated in this paper. 'ese basis functions carry a lot of geometric features of classical Bernstein basis
functions and maintain the shape of the curve and surface as well. 'e generalized trigonometric Bézier (or GT-Bézier, for short)
curves and surfaces are defined on these basis functions and also analyze their geometric properties which are analogous to
classical Bézier curves and surfaces. 'is analysis shows that the existence of shape parameters brings a convenience to adjust the
shape of the curve and surface by simply modifying their values. 'ese GT-Bézier curves meet the conditions required for
parametric continuity (C0, C1, C2, and C3) as well as for geometric continuity (G0, G1, and G2). Furthermore, some curve and
surface design applications have been discussed. 'e demonstrating examples clarify that the new curves and surfaces provide a
flexible approach andmathematical sketch of Bézier curves and surfaces which make them a treasured way for the project of curve
and surface modeling.

1. Introduction

'e study of curves and surfaces plays a very significant role
in computer-aided geometric design (CAGD) and computer
graphics (CG). CAGD deals with the composition and
representation of free-form curves and surfaces. Numerous
applications which demand free-form curves and surfaces
arise in science and engineering, e.g., car bodies, ship hulls,
airplane, and propeller blades. 'e use and effectiveness of
curves in modeling are resolute by the type of input data and
their consequence on the control of the resulting curve.
Curves representation, related to the control points, flexible
enough to bend and twist or change the curve shape by
changing one or more control points as the designers'

requirements are big challenges in curve modelling. For
these reasons, parametric representation of curves and
surfaces is mostly used to handle these challenges.

Bézier curves and surfaces have been extensively used
in CG and CAGD because of their valuable properties.
Bézier curves are parametric curves and are constructed by
using Bernstein polynomials as basis functions. To change
the shape of the classical Bézier curves, their control points
are essential to be adjusted because they have no shape
parameters. In CAD/CAM technology fields, creating
more suitable skills of scheming and amending of Bézier
curve is an important research subject. Since traditional
Bézier curves can be obtained by control points and
Bernstein basis functions, after creating Bézier curves and
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surfaces, we can construct different shapes by using
parametric and geometric continuities which fulfill our
design requirements. Since shape designing is a time-
consuming process, usually we cannot execute our re-
quired design in one step even though by using continuity
conditions, especially, when, we are going to establish
some complex curves and surfaces by the help of those
Bézier curves. In order to overcome this cumbersome
problem, we construct GT-Bézier curves/surfaces based on
GT-basis functions with two shape parameters instead of
any bunch of parameters [1]. Since trigonometric Bézier
curve with the shape parameters is more continuous as
compared to polynomial Bézier curve, by the variation of
shape parameters, we can modify the shape according to
our own choice.

In practical applications, the appearance design of
many products is relatively complex and cannot be illus-
trated by a single curve/surface. 'erefore, there is a ne-
cessity to model such products using adjacent curves/
surfaces with some continuities. 'e authors in [2] derived
the G1, G2 geometric continuity conditions only for
H-Bézier curves of degree n. Hu et al. [3–5] also derived the
continuity conditions between generalized Bézier-like
surfaces with multiple shape parameters in order to resolve
the issue of shape design for complex surfaces in engi-
neering. In industrial applications, computer-aided ma-
chines have the ability to cut the shapes like circles or
helices or the shapes of many objects designed with the help
of straight lines and circle arcs. 'erefore, it is useful to
have curves piecewisely spanned by linear polynomials,
sine and cosine, i.e., cycloidal splines (also called helix
splines) to approximate such objects [6].

Many authors have constructed numerous varieties of
Bézier curve/surface design. A class of extension of Bézier
curve is constructed by Han and Liu [7], Wu et al. [8, 9],
and Liu [10]. Due to the presence of one shape control
parameter in all the above cited work, the control on the
shape of Bézier curve has made more desirable, but still it
is limited. Han et al. [11] suggested shape modification of
cubic quasi-Bézier curve to enhance the shape adjust-
ability of the curves. In [12], Qin et al. described the
extension of cubic Bézier curve with different shape
parameters and also its continuity conditions and ap-
plications. An extension of quartic Bézier curve with
three shape parameters is presented by Zhu et al. [13],
which is a continuation to a forth degree Bézier curve
with a single parameter which improved the shape
control of the curve. In [14], an extension of quartic
Bézier curve is presented by Zhang et al. which not only
inherits the outstanding properties of quadric Bézier
curve but also fits the control polygon. Graphical ex-
amples with valuable design of curves and surfaces are
also given in this literature. Yan and Liang [15] presented
an extension of the Bézier model with all the properties.
'e newly created curves and surfaces by Qin et al. [16]

not only have most properties of the corresponding
classical Bézier curves and surfaces of order n but they
also help to modify the shapes by using various shape
parameters. Hu et al. [17, 18] described the rotation
surfaces by using polynomial basis and shape modifi-
cation of various curves by using shape parameters. 'e
generalized B-spline (GB-spline) functions of arbitrary
order having all the basic properties of the curve are
presented by Ksasov and Sattayatham in [19]. Zhang and
Krause [20] presented the unified trigonometric basis
and the hyperbolic basis with a shape parameter. 'e
functional B-splines (FB-splines) and subdivision
B-splines (SB-splines) are also presented with a geo-
metric proof of curvature continuity for SB-splines. Lü
et al. [21] constructed the trigonometric polynomial
B-spline curves in which they have many similar prop-
erties to traditional B-splines. Based on the explicit
representation of the curves, the subdivision formulae for
this new kind of curve are also presented in this litera-
ture. Wang et al. [22] described the subdivision formulae
of the new kind of NAUT B-spline curves. 'e generation
of tensor product surfaces by these new splines and
unified and extended form of three types of splines are
also studied in this work.

In [23, 24], Han presented the cubic and quadratic
trigonometric polynomial curves with the shape parameters.
'e author used them for various designing purposes with
the help of continuity conditions. Nikolis and Seimenis [25]
presented the special nonlinear dynamical systems by using
cubic trigonometric splines. 'e existence of the unique
spline approximation is proved, and the convergence order
of the method is shown to be cubic. 'e methods based on
various spline techniques for planning and fast modifica-
tions of a trajectory for robot manipulators are investigated
by Dyllong and Visioli in [26]. Su and Zou [27] designed the
manipulator trajectory using algebraic-trigonometric Her-
mite polynomial curves and interpolated the data points for
the manipulator of these curves.

Schweikert in [28] presented the use of a linearized
mathematical spline for interpolation between given points
which occasionally yields extraneous inflection points for
some applications. Mazure [29] defined the Cheby-
shev–Bernstein basis as the dual bases of the linear func-
tional giving the control points in which they shared the
same properties as the Bernstein bases in polynomial
spaces. Xu and Wang [30] presented the two unified
mathematic models of conics and polynomial curves by
AHT Bézier curves and NUAHT B-spline curves. Zhu and
Liu [31] presented a class of trigonometric Bernstein-type
basis functions with four different shape parameters. 'e
continuity conditions and various modeling are also pre-
sented in this work. Mainer et al. [32] discussed several
alternatives to the rational Bézier model based on using
curves generated by mixing polynomial and trigonometric
functions and expressing them in bases with optimal shape
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preserving properties (normalized B-bases). In [33], Wang
and Fang unified and extended the polynomial, trigono-
metric, and hyperbolic splines by a new kind of UE-spline
over a space.

Bosner and Rogina in [34] proposed numerically stable
algorithms for cycloidal splines. 'ey developed a corner
cutting algorithm for lower-order cycloidal curves through
a straightforward generalization. Costantini et al. [35]
presented the approximation power, the existence of a
normalized B-basis, and the structure of a degree-raising
process for spaces of the form requiring suitable as-
sumptions on the functions. Mainer and Peña [36] pre-
sented the quadratic cycloidal curves associated to equally
spaced knots and the properties of the generated curves for
a specific domain. Gang et al. [37] constructed a unified
approach, the generalized nonuniform B-splines, and
studied the corresponding isogeometric analysis frame-
work for solving the partial differential equation. 'e
proposed frameworks have several advantages such as high
accuracy and easy-to-compute derivatives and integrals
due to the nonrational form when compared with the
NURBS-IGA method.

'is paper defines the work based on the construction
of new GT-basis functions of order n(n> 2) which are
described by taking a set of basis functions of degree 2 with
two shape parameters, with identical characteristics to the
classical Bernstein basis functions. As an alternative
technique of representing curves/surfaces, GT-Bézier
curves/surfaces not only demonstrate the valuable char-
acteristics of Bézier curves/surfaces but also allow efficient
shape modification by altering the values of shape pa-
rameters. In order to resolve the problem of not being able
to construct complex curves/surfaces using a single curve/
surface, we study the parametric and geometric continuity
conditions for GT-Bézier curves/surfaces of degree n. 'e
continuity conditions of C3 and G2 between two adjacent
GT-Bézier curves and surfaces are proposed using terminal
properties of GT-Bézier curves/surfaces of degree n. 'e
present GT-basis functions and GT-Bézier curves/surfaces
of degree n are novel for the smooth connection between
two adjacent GT-Bézier curves by C3 continuity conditions
and as far as we are aware, it has never been employed for
thispurpose before.

'is paper is laid out as follows: in Section 2, gen-
eralized trigonometric basis functions are constructed,
and their properties are discussed. 'e GT-Bézier curves
and surfaces are proposed with their properties in Sec-
tions 3 and 7, respectively. 'e geometric implication of
the shape parameters will be examined in Section 4.
Sections 5 and 6 provide the continuity conditions, some

design applications, and examples of GT-Bézier curves
and surfaces. A summarized conclusion is given in
Section 8.

2. GT-Basis Function

We construct the GT-basis functions by using a recursive
relation in this section.

Definition 1. For (− 1≤ α, β≤ 1) and (0≤ z≤ 1), the
functions

w0,2(z) � 1 − sin
π
2

z􏼒 􏼓􏼒 􏼓 1 − α sin
π
2

z􏼒 􏼓􏼒 􏼓,

w1,2(z) � 1 − w0,2(z) − w2,2(z)􏼐 􏼑,

w2,2(z) � 1 − cos
π
2

z􏼒 􏼓􏼒 􏼓 1 − β cos
π
2

z􏼒 􏼓􏼒 􏼓,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

are known as GT-basis functions of degree 2. 'e function
wi,m(z)(i � 0, 1, . . . , m) described recursively for any integer
m(m≥ 3) as

wi,m(z) � 1 − sin
π
2

z􏼒 􏼓􏼒 􏼓wi,m− 1(z) + sin
π
2

z􏼒 􏼓wi− 1,m− 1(z),

(2)

is GT-basis function of the mth order. In situation, when
i � − 1 or i>m, the function wi,m(z) � 0.

2.1. Properties of GT-Basis Functions. 'e GT-basis func-
tions enjoy many properties as follows:

(1) Partition of unity:

􏽘

m

i�1
wi,m(z) � 1. (3)

(2) Nonnegativity: for α, β ∈ [− 1, 1], wi,m(z)≥ 0 (i �

0, 1, . . . , m).
(3) Terminal property: ∀i � 0, 1, 2, 3, . . . , m (m≥ 2),

w0,m(0) � 1, wi,m(0) � 0 (i � 1, 2, . . . , m), wi,m(1) �

0 (i � 0, 1, . . . , m − 1), and wm,m(1) � 1.
(4) Derivative at the corner points:
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wi,m
′ (0) �

−
π
2

m1 + α( 􏼁, i � 0,

π
2

m1 + α( 􏼁, i � 1,

0, other,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wi,m
′ (1) �

−
π
2

(1 + β), i � m − 1,

π
2

(1 + β), i � m,

0, other,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wi,m
″ (0) �

π2

4
m1m2 + 2 m2 + 1( 􏼁α( 􏼁, i � 0,

−
π2

4
2m1m2 + 2 2m2 + 1( 􏼁α +(1 − β)( 􏼁, i � 1,

π2

4
m1m2 + 2m2α +(1 − β)( 􏼁, i � 2,

0, other,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wi,m
″ (1) �

− π2

4
(α − 1), i � m − 2,

π2

4
m2 − 2β +(α − 1)( 􏼁, i � m − 1,

−
π2

4
m2 − 2β( 􏼁, i � m,

0, other,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wi,m
″ (0) �

− π3

8
m

3
3 − 2m2 − 1 + 3m1m2 − 1( 􏼁α􏽨 􏽩, i � 0,

π3

8
m

3
3 − 2m2 + 2m1m2m3 − 1 + 3m1m2 + 6m

2
2 − 1􏼐 􏼑α − 3m2(1 − β)􏽨 􏽩, i � 1,

− π3

8
3m1m2m3 + m2 3m2 − 1( 􏼁α + 6m2(1 − β)􏼂 􏼃, i � 2,

π3

8
m1m2m3 + 3m2m3α + 3m2(1 − β)􏼂 􏼃, i � 3,

0, other,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wi,m
′ (1) �

− π3

8
3m2 + 1( 􏼁(1 + β)􏼂 􏼃, i � m,

π3

8
6m2 + 1( 􏼁(1 + β)􏼂 􏼃, i � m − 1,

− π3

8
3m2(1 + β)􏼂 􏼃, i � m − 2,

0, other,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)
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where mk � (m − k)(k � 1, 2, 3).
Using Definition 3.1, the GT-basis functions for m � 3, 4,

and 5 can be defined as follows:

(1) For m � 3, we have

w0,3(z) � 1 − sin
π
2

z􏼒 􏼓􏼒 􏼓w0,2(z),

w1,3(z) � sin
π
2

z􏼒 􏼓w0,2(z) + 1 − sin
π
2

z􏼒 􏼓􏼒 􏼓w1,2(z),

w2,3(z) � 1 − sin
π
2

z􏼒 􏼓􏼒 􏼓w2,2(z) + sin
π
2

z􏼒 􏼓w1,2(z),

w3,3(z) � sin
π
2

z􏼒 􏼓w2,2(z).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

Figure 1(a) exhibits the curves generated by cubic
GT-basis functions for α, β � − 1 (blue dotted), − 0.5
(green), 0.5 (red), and 1 (black dashed).

(2) For m � 4, we have

w0,4(z) � 1 − sin
π
2

z􏼒 􏼓􏼒 􏼓
2
w0,2(z),

w1,4(z) � 1 − sin
π
2

z􏼒 􏼓􏼒 􏼓 2 sin
π
2

z􏼒 􏼓w0,2(z) + 1 − sin
π
2

z􏼒 􏼓􏼒 􏼓w1,2(z)􏼒 􏼓,

w2,4(z) � sin π
2 z􏼐 􏼑

2
w0,2(z) + 1 − sin π

2 z􏼐 􏼑􏼐 􏼑
2
w2,2(z) + 2 sin

π
2

z􏼒 􏼓 1 − sin
π
2

z􏼒 􏼓􏼒 􏼓w1,2(z),

w3,4(z) � sin
π
2

z􏼒 􏼓 2 1 − sin
π
2

z􏼒 􏼓􏼒 􏼓w2,2(z)􏼒 􏼓 + sin
π
2

z􏼒 􏼓w1,2(z),

w4,4(z) � sin π
2 z􏼐 􏼑

2
w2,2(z).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

Figure 1(b) depicts the graphs of quartic GT-basis
functions with α, β � − 1 (blue), − 0.5 (red dotted), 0.5
(orange), and 1 (black dashed).

(3) For m � 5, we have

w0,5(z) � 1 − sin π
2 z􏼐 􏼑􏼐 􏼑

3
w0,2(z),

w1,5(z) � 1 − sin π
2 z􏼐 􏼑􏼐 􏼑

2
3 sin

π
2

z􏼒 􏼓w0,2(z) + 1 − sin
π
2

z􏼒 􏼓􏼒 􏼓w1,2(z),􏼒

w2,5(z) � 1 − sin
π
2

z􏼒 􏼓􏼒 􏼓 3 sin π
2 z􏼐 􏼑

2
w0,2(z) + 3 sin

π
2

z􏼒 􏼓 1 − sin
π
2

z􏼒 􏼓􏼒 􏼓w1,2(z) + 1 − sin π
2 z􏼐 􏼑􏼐 􏼑

2
w2,2(z),􏼒

w3,5(z) � sin
π
2

z􏼒 􏼓 sin π
2 z􏼐 􏼑

2
w0,2(z) + 3 sin

π
2

z􏼒 􏼓 1 − sin
π
2

z􏼒 􏼓􏼒 􏼓w1,2(z) + 3 1 − sin π
2 z􏼐 􏼑􏼐 􏼑

2
w2,2(z),􏼒

w4,5(z) � sin π
2 z􏼐 􏼑

2
3 1 − sin

π
2

z􏼒 􏼓􏼒 􏼓w2,2(z) + sin
π
2

z􏼒 􏼓w1,2(z)􏼒 ,

w5,5(z) � sin π
2 z􏼐 􏼑

3
w2,2(z).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)
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'e graphs of 5th and 10th degree GT-basis functions
with shape parameters α, β � − 1 (blue dotted), − 0.3 (red),
0.5 (green), and 1 (black dashed) are given in Figures 1(c)
and 1(d), respectively.

3. Construction of GT-Bézier Curves

Definition 2. For any given control points Pi ∈ R2 or R3(i �

0, 1, . . . , m) and shape parameters α, β, the GT-Bézier curve
can be constructed as

S(z) � 􏽘
m

i�0
Piwi,m(z), (8)

where wi,m(z) are GT-basis functions (2).

3.1. Properties of GT-Bézier Curves. In this section, we ex-
amine the geometric properties of GT-Bézier curves which
are identical to classical Bézier curves.

(1) Terminal properties:
S(0) � P0,

S(1) � Pm,

S′(0) �
π
2

m1 + α( 􏼁 P1 − P0( 􏼁,

S′(1) �
π
2

(1 + β) Pm − Pm− 1( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

If m � 3,

S″(0) �
π2

4
2(1 + 2α)P0 − (5 + 6α − β)P1 +(3 + 2α − β)P2􏼂 􏼃,

S″(1) �
π2

4
(1 − α)P1 +(α − 2β)P2 − (1 − 2β)P3􏼂 􏼃,

S′(0) �
π3

8
(2 − 5α)P0 +(1 + 11α − 3β)P1 − 3(2 + 2α − 2β)P2 +(3 − 3β)P3􏼂 􏼃,

S′(1) �
π3

8
(1 + β) 7P2 − 3P1 − 4P3􏼂 􏼃.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

If m≥ 3,

S″(0) �
π2

4
m1m2 + 2m2α( 􏼁 P2 − 2P1 + P0( 􏼁 +(1 − β) P2 − P1( 􏼁 − 2α P1 − P0( 􏼁􏼂 􏼃,

S″(1) �
π2

4
(α − 1) Pm− 1 − Pm− 2( 􏼁 − m2 − 2β( 􏼁 Pm − Pm− 1( 􏼁􏼂 􏼃,

S″(0) �
π3

8
m

3
3 − 2m2 − 1 + 3m1m2 − 1( 􏼁α􏼐 􏼑 P1 − P0( 􏼁 + 3m2(1 − β) P3 − 2P2 + P1( 􏼁 + m1m2m3 P3 − 3P2 + 2P1( 􏼁􏽨

+ m2α 3m3P3 − 3m2 − 1( 􏼁P2 + 6m2P1( 􏼁􏼁,

S″(1) �
π3

8
(1 + β) Pm− 1 − Pm− 2( 􏼁 − 3m2(1 + β) Pm − 2Pm− 1 + Pm− 2( 􏼁􏼂 􏼃.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

(2) Convex hull property: the whole GT-Bézier curve
segment absolutely lies inward its control polygon.

(3) Geometric invariance: the shape of the GT-Bézier
curve does not depend on the choice of the chosen

coordinate. 'is property can be visualized by Fig-
ure 2. Figure 2(a) shows that black is the first curve
S(z) with control points Pi, and the blue curve is
obtained by adding a point O′ � (3, 9) in S(z).
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Figure 1: GT-basis functions of multiple degrees with multiple shape parameters. (a) m � 3. (b) m � 4. (c) m � 5. (d) m � 10.
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Figure 2: Geometric invariance of GT-Bézier curves. (a) Geometric invariance with respect to addition. (b) Geometric invariance with
respect to multiplication.
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Yellow-dotted circle on the blue circle is obtained by
the control points Pi + O′. Similarly, Figure 2(b)
shows that black is the first curve S(z) with con-
trol points Pi, the blue curve is represented by the
control points Pi ∗Y′, and the yellow-dotted curve
printed on the blue curve is obtained by multiplying

S(z) with a matrix Y′ �
1 2
3 1􏼠 􏼡.

4. Geometric Implication of Shape Parameters

4.1. Correlation amid Shape Parameters and Stationary Points
on the Curves. From the definition of GT-Bézier curve (8),
we confirm that it is a linear function for every shape pa-
rameter, and

zS(z)

zα
�

m − 2

i

⎛⎝ ⎞⎠ 1 − sin
π
2

z􏼒 􏼓􏼒 􏼓
m− 1− i

sin
π
2

z􏼒 􏼓􏼒 􏼓
i+1

Pi+1 − Pi( 􏼁, i � 0, 1, . . . , m − 2,

zS(z)

zβ
�

m − 2

i − 1
⎛⎝ ⎞⎠cos

π
2

z􏼒 􏼓 1 − cos
π
2

z􏼒 􏼓􏼒 􏼓

1 − sin
π
2

z􏼒 􏼓􏼒 􏼓
m− 1− i

sin
π
2

z􏼒 􏼓􏼒 􏼓
i− 1

Pi − Pi+1( 􏼁,

i � 1, 2, . . . , m − 1.

(12)

'erefore, there is no relationship among (zS(z)/zα)

and α and (zS(z)/zβ) and β. Modifying one shape parameter
α or β, the point S(z) on the curve changed linearly for an
unmovable control polygon and defined value of z. 'e
route modification is as follows:

PiPi+1, i � 0, 1, . . . , m − 2 for α,

Pi+1Pi, i � 1, 2, . . . , m − 1 for β.
􏼨 (13)

Figures 3 and 4 depict the graphs of cubic and quartic
GT-Bézier curves, respectively. Points marked on the cubic
GT-Bézier curves relate to S(0.2) in red, S(0.4) in blue,
S(0.6) in black, and S(0.8) in green, as well as on quartic GT-
Bézier curves correlate to S(0.2) in orange, S(0.4) in blue,
S(0.6) in red, and S(0.8) in green. From these figures, it can
be concluded that, by just altering one shape parameter, the
points on these curves change in a linear manner.

4.2. Affiliation among the Shape Parameters and the Shape of
the Curves. 'e above defined characteristics of the GT-
basis functions make the shape of GT-Bézier curves ex-
traordinarily easier to modify. 'e appearance of the GT-
Bézier curves can be attuned by changing the values of shape
parameters. Figure 5 displays the graphs of cubic, quartic,
and quintic GT-Bézier curves. Figure 5(a) shows the cubic
GT-Bézier curves with (α, β) � (− 0.5, − 1){ (purple),
(0.5, − 0.5) (blue dotted), (1, 0) (blue), (1, 0.5) (red dashed),
(1, 1)(black)}. 'e second flower presented in Figure 5(b) is

designed by cubic GT-Bézier curves when (α, β) � (0, 0){

(red), (1, 1) (green), (− 1, − 1) (blue), (0.5, 0.5) (black
dashed), (− 0.5, − 0.5)(red dotted)}. Figure 5(c) shows the
flower created by quartic GT-Bézier curves with shape pa-
rameters (α, β) � (− 1, − 1){ (red dashed), (− 1, − 0.5) (blue),
(1, 1) (black dotted), (− 1, 0.5) (blue dashed),(− 1, 1)(orange)}.
By using different values of shape parameters, (α, β) � (0, 0){

(black dotted), (1, 1) (red), (− 1, − 1) (blue dashed), (0.5, 0.5)

(orange),(− 0.5, − 0.5)(purple)}, the quintic GT-Bézier flowers
are generated in Figure 5(d). Figure 6(a) represents the shape
modification of an apple by changing the values of shape
parameters as for (α, β) � (1, 1){ (purple), (0.5, 0.5) (blue
dotted), (0.0) (red dashed dashed), (− 0.5, − 0.5)(black)},
whereas Figure 6(b) illustrates different shapes of the butterfly
by applying these values of shape parameters (α, β) �

(0.9, 0.9){ (black), (0.5, 0.5) (orange),(0.1, 0.1)(blue)}.

5. Continuity of GT-Bézier Curves

'e continuity conditions for connecting two GT-Bézier
curve segments are described as follows:

Lemma 1 (see [16]). For two given GT-Bézier curves S(z) �

􏽐
m
i�0 Piwi,m(z) and S1(z) � 􏽐

n
j�0 P1jwj,n(z) with control

points P0, P1, P2, . . . , Pm, m≥ 3, and P10, P11, P12, . . . , P1n,
n≥ 3, respectively, the necessary and sufficient constraints for
parametric continuity are given by

(1) Pm � P10 for C0 continuity
(2) Pm � P10 and S′(1) � S1′(0) for C1 continuity
(3) Pm � P10, S′(1) � S1′(0), and S″(1) � S1″(0) for C2

continuity
(4) Pm � P10, S′(1) � S1′(0), S″(1) � S1″(0), and S″′(1)

� S″
′
1(0) for C3 continuity

Lemma 2 (see [16]). Given control points P0, P1, P2, . . . , Pm,
m≥ 3, and P10, P11, P12, . . . , P1n, n≥ 3, the necessary and
sufficient constraints for connecting two GT-Bézier curve
segments S(z) � 􏽐

m
i�0 Piwi,m(z) and S1(z) � 􏽐

n
j�0 P1jwj,n(z)

are defined by

(1) For G0 continuity: Pm � P10.
(2) For G1 continuity: Pm � P10 and S′(1) � cS1′(0),

c> 0.
(3) For G2 continuity: Pm � P10, S′(1) � cS1′(0), c> 0,

and the curvature

κ(1) �
S′(1) × S″(1)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

S′(1)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
3 �

S1′(0) × S1″(0)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

S1′(0)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
3 � κ1(0). (14)

Parametric and geometric continuity constraints for
connecting two GT-Bézier curve segments are given in the
following two theorems.

Theorem 1. For two GT-Bézier curve segments S(z; α, β) �

􏽐
m
i�0 Piwi,m(z) and S1(z; α1, β1) � 􏽐

n
j�0 P1jwj,n(z) with

control points P0, P1, P2, . . . , Pm, m≥ 3, and P10, P11,
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Figure 3: Modifying sequel of shape parameters on the cubic GT-Bézier curve. (a) α � − 1. (b) α � 1. (c) α � β. (d) β � − 1.
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Figure 4: Effect of shape parameters on quartic GT-Bézier curves. (a) α � β. (b) α � 0.5. (c) β � − 0.5. (d) α � − 1.
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P12, . . . , P1n, n≥ 3, respectively, the necessary and sufficient
constraints of parametric continuity are derived as

(1) C0 continuity, P10 � Pm.
(2) For C1 continuity,

P10 � Pm,

P11 � Pm +
(1 + β) Pm − Pm− 1( 􏼁

n1 + α1
.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(15)

(3) For C2 continuity,

P10 � Pm,

P11 � Pm +
(1 + β) Pm − Pm− 1( 􏼁

n1 + α1
,

P12 � Pm +
1

n1n2 + 2n2α1 +(1 − β1)
(α − 1) Pm− 1 − Pm− 2( 􏼁􏼂

− m2 − 2β( 􏼁 − a 2n1n2 + 2n2 − 1( 􏼁2α1 +(1 − β1)( 􏼁( 􏼁 Pm − Pm− 1( 􏼁􏼃.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

(4) For C3 continuity,
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Figure 5: Flower design by GT-Bézier curves with different shape parameters. (a) m � 3. (b) m � 3. (c) m � 4. (d) m � 5.
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P10 � Pm,

P11 � Pm +
(1 + β) Pm − Pm− 1( 􏼁

n1 + α1
,

P12 � Pm +
1

n1n2 + 2n2α1 +(1 − β1)
(α − 1) Pm− 1 − Pm− 2( 􏼁 − m2 − 2β( 􏼁 − a 2n1n2 + 2n2 − 1( 􏼁2α1 +(1 − β1)( 􏼁( 􏼁 Pm − Pm− 1( 􏼁􏼂 􏼃,

P13 � Pm +
1
a1

(1 + β) Pm− 1 − Pm− 2( 􏼁 − 3m2(1 + β) Pm − 2Pm− 1 + Pm− 2( 􏼁 + a a2 − 2n1n2n3 − 3n2(1 − β1) + 6n
2
2α1􏼐 􏼑 Pm − Pm− 1( 􏼁􏽨

+ 6n2(1 − β1) + 3n1n2n3 + n2 3n2 − 1( 􏼁α1( 􏼁a3􏼃,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

where a � ((1 + β)/(n1 + α1)), a1 � n2(3(1 − β1 + n1n3 +

3n3α1)), a2 � (n3
3 − 2n2 − 1 +(3n1n2 − 1)α), a3 � (1/(n1n2 +

2n2α1 + (1 − β1)))[(α − 1)(Pm− 1 − Pm− 2) − ((m2 − 2β))(− a

(2n1n2 + (2n2 − 1)2α1 + (1 − β1))(Pm − Pm− 1)], and nk �

(n − k) (k � 1, 2, 3).

Proof

(1) C0 continuity is simple and straightforward from
S(1) � S1(0).

(2) From C0 continuity condition, Pm � P10 and
S′(1) � S1′(0). It is simple to obtain the required
value of control P11 from S′(1) � (π/2)(1 + β)(Pm−

Pm− 1), S1′(0) � (π/2)(n1 + α1)(P11 − P10).
(3) C2 continuity condition is C1 continuity condition in

addition with S″(1) � S1″(0), so from Pm � P10,

P11 � Pm + ((1+ β)(Pm − Pm− 1)/(n1 + α1)), and
end constraints (10), C2 continuity constraint (16) is
achieved.

(4) C3 continuity can be achieved by using C2 continuity
conditions along with S″′(1) � S″′(0). From the
terminal properties (9)–(11) of the GT-Bézier curves,
C3 continuity condition (17) is obtained. □

Theorem 2. For two segments of GT-Bézier curves
S(z; α, β) � 􏽐

m
i�0 Piwi,m(z) and S1(z; α1, β1) � 􏽐

n
j�0

P1jwj,n(z) with control points P0, P1, P2, . . . , Pm, m≥ 3, and
P10, P11, P12, . . . , P1n, n≥ 3, the necessary and sufficient
constraints of geometric continuity are defined as

(1) G0 continuity, P10 � Pm.
(2) For G1 continuity,
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1.0
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2.0
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Figure 6: GT-Bézier curve design with different shape parameters.
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P10 � Pm,

P11 � Pm +
(1 + β) Pm − Pm− 1( 􏼁

n1 + α1( 􏼁c
.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(18)

(3) For G2 continuity,

P10 � Pm,

P11 � Pm +
(1 + β) Pm − Pm− 1( 􏼁

n1 + α1( 􏼁c
,

P12 � Pm +
1

c2 n1n2 + 2n2α1 +(1 − β1)(

(α − 1) Pm− 1 − Pm− 2( 􏼁 − m2 − 2β( 􏼁 − b 2n1n2 + 2n2 − 1( 􏼁2α1+(1 − β1) −
2λ
π

n1 + α1( 􏼁􏼡􏼡􏼠􏼠 􏼡 Pm − Pm− 1( 􏼁􏼢 􏼣,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

where b � ((1 + β)/c(n1 + α1)).

Proof

(1) Using straightforward computations, G0 continuity
is obvious.

(2) G1 continuity condition can be achieved if P10 � Pm

and S′(1) � cS1′(0), c> 0. Using end constraints
S′(1) � (π/2)(1 + β)(Pm − Pm− 1) and,
S1′(0) � (π/2)(n1 + α1)(P11 − P10). From the ter-
minal properties of the GT-Bézier curves, G1 con-
tinuity condition (18) is obtained.

(3) If both GT-Bézier curves S(z; α, β) and S1(z; α1, β1)

connect by G2 continuity, they need to connect first
by G1 at a common joint, which means

S(1; α, β) � Pm � Q0 � S1(0; α1, β1),

S′(1) � cS1′(0), c> 0.
􏼨 (20)

Suppose that the vice normal vector N1 � S′(1) × S″(1)

for S(z) at z � 1 and reverse normal vector N2 � S1′(0) ×

S1″(0) of S1(z); then, we have

N1 � S′(1) × S″(1),

N2 � S1′(0) × S1″(0).

⎧⎨

⎩ (21)

Both vice normal vectors N1 and N2 must have the same
direction at the joint to achieve the G2 continuity. Four
vectors S′(1), S″(1), S1′(0), and S1″(0) become coplanar by
combining equations (20) and (21). 'us, we obtain

S″(1) � δS1″(0) + λS1′ (0), δ > 0. (22)

As G2 continuity is archived, if the curvatures κ1(t) and
κ2(t) for the GT-Bézier curves S(z; α, β) and S1(z; α1, β1),
respectively, have the same value at the joint point, i.e.,
κ1(1) � κ2(0), using equations (20)–(22), we obtain

κ1(1) �
S′(1) × S″(1)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

S′(1)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
3

�
cS1′(0) × δS1″(0) + λS1′(0)( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

c3 S1′(0)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
3

�
δ S1′(0) × S1″(0)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

c2 S1′(0)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
3

� κ2(0).

(23)

From equation (23), δ � c2, and substituting this value
into equation (22), we have

S″(1) � c
2
S1″(0) + λS1′ (0). (24)

From the terminal properties of the GT-Bézier curves,
G2 continuity condition (19) is obtained. □

6. Examples and Discussions

Some examples and discussions about parametric and
geometric continuity of GT-Bézier curves are given in this
section.

(1) Figure 7(a) illustrates the C1 continuity of GT-Bézier
curves of order 3, 4, and 5, respectively, with control
points P0 � (0.1, 0.4), P1 � (0.15, 0.75), P2 � (0.25,

0.9), P3 � (0.5, 0.9), P4 � (0.5, 0.6) � P10, P11 �

(0.5, 0.4), P12 � (0.65, 0.3), P13 � (0.8, 0.35), P14 �

(0.9, 0.5), P15 � (0.85, 0.7) � P20, P21 � (0.8, 0.9),
P22 � (0.95, 1.05), and P23 � (1.1, 0.8) for different
values of shape parameters α, β. Applying C1 con-
tinuity conditions (15) on these GT-Bézier curves,
points P11 and P21 for every curve can be derived as
(0.5, 0.48), (0.5, 0.5), (0.5, 0.25), and (0.5, 0.557)

and (0.817, 0.83), (0.82, 0.82), (0.825, 0.8), and
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(0.833, 0.766), respectively, with decreasing values of
α, β.

(2) For given control points P0 � (0, 0), P1 � (1, 0.8),
P2 � (2, 1), P3 � (3, 0.5) � P10, and P13 � (1, − 2),
Figure 7(b) represents C2 continuity of two cubic
GT-Bézier curve segments. Using C2 continuity
constraints (16) of two GT-Bézier curves, the cal-
culated control points P11 and P12 for each curve
according to the decreasing values of β are
(3.66, 0.16), (3.6, 0.2), (3.45, 0.27), and (3.36, 0.3)

and (4.9, − 0.46), (4.5, − 0.22), (4, − 0.015), and
(3.6, 0.17), respectively.

(3) Figure 7(c) displays the G2 continuity of cubic and
quartic GT-Bézier curves with control points
P0 � (0.1, 0.4), P1 � (0.2, 0.75), P2 � (0.35, 0.9),

P3 � (0.55, 0.9), P4 � (0.7, 0.6) � P10, and
P13 � (0.3, − 0.2) and shape parameters α, β. Using
conditions (19) of G2 continuity from'eorem 2, the
computed control points P11 and P12 for each curve
corresponding to the increasing value of c are given
as (0.89, 0.2), (0.83, 0.33), (0.79, 0.4), (0.78, 0.44),
and (0.76, 0.46) and (1.09, − 0.23), (1, − 0.03),
(0.94, 0.1), (0.89, 0.2), and (0.86, 0.26), respectively.

(4) Two cubic GT-Bézier curves exhibit C3 continuity in
Figure 7(d) along with control points P0 � (0, 0),
P1 � (1, 2), P2 � (2, 2), and P3 � (3, 1) � P10 and
shape parameters α, β. Using conditions (17) of C3

continuity from 'eorem 1, calculated control point
P11 for each curve is (3.8, 0.2), (3.79, 0.21),
(3.78, 0.22), (3.77, 0.23), and (3.76, 0.24), point P12
is (5, − 1), (4.8, − 0.86), (4.6, − 0.7), (4.8, − 0.5), and
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α = β = 1 (red dashed)
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(d)

Figure 7: Parametric and geometric GT-Bézier continuity curves of different degrees. (a) C1 continuity. (b) C2 continuity. (c) G2 continuity.
(d) C3 continuity.
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(4.3, − 0.41), and point P13 is (7, 1), (6.1, 0.75),
(5.6, 0.77), (5, 0.73), and (4.7, 0.733)

correspondingly.

7. GT-Bézier Surfaces

7.1. Formation of the GT-Bézier Surface. 'e GT-Bézier
surfaces of order m × n for given points Pi,j ∈ R2 or R3(i �

0, 1, . . . , m, j � 0, 1, . . . , n) with shape parameters
α, α1, β, β1 are defined as

Wm,n z, z1( 􏼁 � 􏽘
m

i�0
􏽘

n

j�0
Pi,jwi,m(z)wj,n z1( 􏼁, z, z1 ∈ [0, 1],

(25)

where wi,m(z), wj,n(z1) (i � 0, 1, . . . , m, j � 0, 1, . . . , n) are
GT-basis functions (2). Figures 8(a)–8(d) represent the GT-
Bézier vine glass, GT-Bézier vase diagrams, and GT-Bézier
swept surface of different orders but with fixed values of
shape parameters, whereas Figures 9(a)–9(c) demonstrate
the GT-Bézier surfaces of different degrees with different
values of shape parameters.

7.2. G2 Continuity of GT-Bézier Surfaces. In engineering
applications, G2 continuity between two adjacent surface
patches is required, that is, at every point where the curved
surfaces meet, the surfaces must have a combined tangent
plane or a collective normal line to the surface [3–5, 38].
'ere exists continuity in different four types of directions
between two GT-Bézier surfaces Wm1,n1(z, z1; α, α1, β, β1) �

􏽐
m1
i�0􏽐

n1
j�0Pi,jwi,m1(z)wj,n1(z1) and W1m2,n2(z, z1; α∗,

α1∗, β∗, β1∗) � 􏽐
m2
k�0􏽐

n2
l�0P1k,lwk,m2(z)wl,n2(z1).

7.3. Continuity in z Direction on Every Surface. Two regions
of GT-Bézier surfaces should have a collective edge curve to
attain G1 continuity, i.e.,

Wm1,n1(z, 1; α, α1, β, β1) � W1m2,n2 z, 0; α∗, α1∗, β∗, β1∗( 􏼁,

(26)

which results in

􏽘

m1

i�0
Pi,n1

wi,m1
(z; α, β) � 􏽘

m2

k�0
P1k,0wk,m2

z; α∗, β∗( 􏼁, (27)

implying

􏽘

m

i�0
Pi,n1

wi,m(z; α, β) � 􏽘
m

i�0
P1i,0wi,m t; α∗, β∗( 􏼁. (28)

If α � α∗, β � β∗, then

Pi,n1
� P1i,0. (29)

'e normal direction at the boundary is uninterrupted
for two regions of the surfaces, i.e., the joining boundary
should have a mutual tangent plane to meet the G1 conti-
nuity between two regions of the surfaces. So, we have the
following condition:

z

zz
Wm,n1

(z, 1; α, α1, β, β1) ×
z

zz1
Wm,n1

(z, 1; α, α1, β, β1)

� f z1( 􏼁
z

zz
W1m,n2

z, 0; α∗, α1∗, β∗, β1∗( 􏼁 ×
z

zz1
,

W1m,n2
t, 0; α∗, α1∗, β∗, β1∗( 􏼁,

(30)

where f(z1) is the scaling factor among their normal vectors
such that f(z1)> 0. Equivalently,

z

zz1
Wm,n1

(z, 1; α, α1, β, β1) � f ·
z

zz1
W1m,n2

z, 0; α∗, α1∗, β∗, β1∗( 􏼁. (31)

Since

z

zz1
Wm,n1

(z, 1; α, α1, β, β1) �
π
2

􏽘

m

i�0
wi,m(z; α, β)(1 + β1) Pi,n1

− Pi,n1− 1􏼐 􏼑, (32)

z

zz1
W1m,n2

z, 0; α∗, α1∗, β∗, β1∗( 􏼁 �
π
2

􏽘

m

i�0
wi,m z; α∗, β∗( 􏼁 n2 − 1 + α1∗( 􏼁 P1i,1 − P1i,0􏼐 􏼑. (33)

Substituting (32) and (33) into equation (31), we have

π
2

􏽘

m

i�0
wi,m(z; α, β)(1 + β1) Pi,n1

− Pi,n1− 1􏼐 􏼑

� f ·
π
2

􏽘

m

i�0
wi,m z; α∗, β∗( 􏼁 n2 − 1 + α1∗( 􏼁 P1i,1 − P1i,0􏼐 􏼑.

(34)

If α � α∗, β � β∗, then

(1+β1) Pi,n1
− Pi,n1− 1􏼐 􏼑 � f · n2 − 1+α1∗( 􏼁 P1i,1 − P1i,0􏼐 􏼑.

(35)

Continuity conditions on each surface are described in
equations (29) and (35) which are the general conditions for
G1 continuity in z direction. In accumulation, under G1

continuity condition, the two surfaces need to retain the
similar normal curvature at any point on their joint
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Figure 8: GT-Bézier surfaces of different degrees. (a) 5th order GT-Bézier surface. (b) (5 × 6)th order GT-Bézier surface. (c) (8 × 5)th order
GT-Bézier surface. (d) 6th order GT-Bézier surface.

Mathematical Problems in Engineering 15



boundary, so the two surfaces also have to fulfil the following
G2 continuity constraints:

z2

zz2
1
Wm,n1

(z, 1; α, α1, β, β1) � f
2 z2

zz2
1

W1m,n2
z, 0; α∗, α1∗, β∗, β1∗( 􏼁 + 2fg(z)

z

zz zz1
W1m,n2

z, 0; α∗, α1∗, β∗, β1∗( 􏼁

+ g
2
(z)

z2

zz1zz1
W1m,n2

z, 0; α∗, α1∗, β∗, β1∗( 􏼁 + c
z

zz1
W1m,n2

z, 0; α∗, α1∗, β∗, β1∗( 􏼁

+ d(z)
z

zz
W1m,n2

z, 0; α∗, α1∗, β∗, β1∗( 􏼁,

(36)

where g(z) and d(z) are linear functions of z and c is a
random constant. For the simplification of operation and
calculation in applied submissions, generally, set
g(z) � d(z) � c � 0 [32], so the above equation can be
further simplified as

z2

zz2
1
Wm,n1

(z, 1; α, α1, β, β1)

� f
2 z2

zz2
1

W1m,n2
z, 0; α∗, α1∗, β∗, β1∗( 􏼁.

(37)

Since

z2

zz2
1
Wm,n1

(z, 1; α, α1, β, β1) �
π2

4
􏽘

m

i�0
wi,m(z; α, β) (1 − α1) Pi,n1− 2 − Pi,n1− 1􏼐 􏼑􏽨

+ n1 − 2(1 + β1)( 􏼁 Pi,n1− 1 − Pi,n1
􏼐 􏼑􏽩,

(38)

z2

zz2
1

W1m,n2
z, 0; α∗, α1∗, β∗, β1∗( 􏼁 �

π2

4
􏽘

m

i�0
wi,m z; α∗, β∗( 􏼁 n2 − 1( 􏼁 n2 − 2( 􏼁 + 2α1∗( 􏼁 P1i,0 − P1i,1􏼐 􏼑􏽨

− n2 − 1( 􏼁 n2 − 2( 􏼁 + 2 n2 − 2( 􏼁α1∗ + 1 − β1∗( 􏼁( 􏼁 P1i,1 − P1i,2􏼐 􏼑􏽩.

(39)

Substituting (38) and (39) into equation (37), we get

π2

4
􏽘

m

i�0
wi,m(z; α, β) (1 − α1) Pi,n1− 2 − Pi,n1− 1􏼐 􏼑 + n1 − 2(1 + β1)( 􏼁 Pi,n1− 1 − Pi,n1

􏼐 􏼑􏽨 􏽩

� f
2π2

4
􏽘

m

i�0
wi,m z; α∗, β∗( 􏼁 n2 − 1( 􏼁 n2 − 2( 􏼁 + 2α1∗( 􏼁 P1i,0 − P1i,1􏼐 􏼑 − n2 − 1( 􏼁 n2 − 2( 􏼁(􏽨

+ 2 n2 − 2( 􏼁α1∗ + 1 − β1∗( 􏼁􏼁 P1i,1 − P1i,2􏼐 􏼑􏽩.

(40)

If α � α∗, β � β∗, we have
(1 − α1) Pi,n1− 2 − Pi,n1− 1􏼐 􏼑 + n1 − 2(1 + β1)( 􏼁 Pi,n1− 1 − Pi,n1

􏼐 􏼑

� f
2

n2 − 1( 􏼁 n2 − 2( 􏼁 + 2α1∗( 􏼁 P1i,0 − P1i,1􏼐 􏼑 − n2 − 1( 􏼁 n2 − 2( 􏼁(􏽨

+ 2 n2 − 2( 􏼁α1∗ + 1 − β1∗( 􏼁􏼁 P1i,1 − P1i,2􏼐 􏼑􏽩.

(41)
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To sum up, if the two surfaces Wm,n2
(z, 1; α, α1, β, β1)

and W1m,n2
(z, 0; α∗, α1∗, β∗, β1∗) satisfy (29), (35), and (41)

at the same time, the G2 continuity in z direction is achieved.

7.4. Continuity in z and z1 Direction. 'e condition of
holding a common boundary when the surface
Wm1,n1(z, z1; α, α1, β, β1) has continuity in z direction and
the surface W1m2,n2(z, z1; α∗, α1∗, β

∗, β1∗) has continuity in
z1 direction is

Wm1,n1(z, 1; α, α1, β, β1) � W1m2,n2 0, z1; α
∗
, α1∗, β∗, β1∗( 􏼁,

(42)

or

􏽘

m1

i�0
Pi,n1

wi,m1
(z; α, β) � 􏽘

n2

l�0
P10,lwl,n2

z1; α1
∗
, β1∗( 􏼁, (43)

implying

􏽘

m

i�0
Pi,n1

wi,m(z; α, β) � 􏽘
m

i�0
P10,iwi,m z1; α1

∗
, β1∗( 􏼁. (44)

If α � α1∗, β � β1∗, then equation (44) is further sim-
plified as

Pi,n1
� P10,i. (45)

For having a common tangent plane, we have the fol-
lowing condition:

z

zz1
Wm1 ,n1

(z, 1; α, α1, β, β1)

� f ·
z

zz
W1m2 ,n2

0, z1; α
∗
, α1∗, β∗, β1∗( 􏼁.

(46)

Since
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Figure 9: GT-Bézier surfaces of different degrees with multiple shape parameters. (a) Cubic GT-Bézier surfaces. (b) Quartic GT-Bézier
surfaces. (c) Quintic GT-Bézier surfaces.
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(a) (b)

(c) (d)

Figure 10: 'e effect of changing scaling factor on cubic GT-Bézier surfaces. (a) f � 0.75, α, β, α∗, β∗ � 1. (b) f � 1, α, β, α∗, β∗ � 1.
(c) f � 1.5, α, β, α∗, β∗ � 1. (d) f � 4, α, α∗ � 1, β, β∗ � 1.
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z

zz1
Wm1 ,n1

(z, 1; α, α1, β, β1)

�
π
2

􏽘

m1

i�0
wi,m1

(z; α, β)(1 + β1) Pi,n1
− Pi,n1− 1􏼐 􏼑,

(47)

z

zz
W1m2 ,n2

0, z1; α
∗
, α1∗, β∗, β1∗( 􏼁

�
π
2

􏽘

n2

l�0
wl,n2

z1; α1
∗
, β1∗( 􏼁 m2 − 1 + α∗( 􏼁 P11,l − P10,l􏼐 􏼑.

(48)

Substituting (47) and (48) into equation (46), we obtain

π
2

􏽘

m1

i�0
wi,m1

(z;α,β)(1+β1) Pi,n1
− Pi,n1− 1􏼐 􏼑

�
π
2

􏽘

n2

l�0
P10,lwl,n2

z1;α1
∗
,β1∗( 􏼁 m2 − 1+α∗( 􏼁 P11,l − P10,l􏼐 􏼑.

(49)

If α � α1∗, β � β1∗, we have

(1 + β1) Pi,n1
− Pi,n1− 1􏼐 􏼑 � f · m2 − 1 + α∗( 􏼁 P11,i − P10,i􏼐 􏼑.

(50)

Hence, the general conditions for G1 continuity in z and
z1 direction are described in equations (41) and (46); when
α � α1∗, β � β1∗, then the continuity conditions are defined
in equations (45) and (50).

Moreover, from G1 smooth continuity conditions, the
two surfaces are also essential to have the same normal
curvature at each point on their shared boundary, so for G2

continuity, they also required to satisfy

z2

zz2
1
Wm,n1

(z, 1; α, α1, β, β1)

� f
2 z2

zz2 W1m,n2
0, z1; α

∗
, α1∗, β∗, β1∗( 􏼁.

(51)

Substituting the boundary surfaces into equation (53),
we get

π2

4
􏽘

m

i�0
wi,m(z; α, β) (1 − α1) Pi,n1− 2 − Pi,n1− 1􏼐 􏼑 + n1 − 2(1 + β1)( 􏼁 Pi,n1− 1 − Pi,n1

􏼐 􏼑􏽨 􏽩

� f
2π2

4
􏽘

m

i�0
wi,m z1; α1

∗
, β1∗( 􏼁 m2 − 1( 􏼁 m2 − 2( 􏼁 + 2α∗( 􏼁 P10,i − P11,i􏼐 􏼑 − m2 − 1( 􏼁 m2 − 2( 􏼁(􏽨

+ 2 m2 − 2( 􏼁α∗ + 1 − β∗( 􏼁􏼁 P11,i − P12,i􏼐 􏼑􏽩.

(52)

When α � α1∗, β � β1∗, equation (52) yields

(1 − α1) Pi,n1− 2 − Pi,n1− 1􏼐 􏼑 + n1 − 2(1 + β1)( 􏼁 Pi,n1− 1 − Pi,n1
􏼐 􏼑

� f
2

m2 − 1( 􏼁 m2 − 2( 􏼁 + 2α∗( 􏼁 P10,i − P11,i􏼐 􏼑 + m2 − 1( 􏼁 m2 − 2( 􏼁 + 2 m2 − 2( 􏼁α∗ + 1 − β∗( 􏼁( 􏼁 P12,i − P11,i􏼐 􏼑􏽨 􏽩.
(53)

Finally, if the two surfaces Wm,n2
(z, 1; α, α1, β, β1) and

W1m,n2
(0, z1; α∗, α1∗, β

∗, β1∗) satisfy (45), (50), and (53),
then both surfaces are connected by G2 continuity in z and
z1 direction.

7.5. Continuity in z1 Direction. 'e G1 and G2 continuity in
z1 direction of two GT-Bézier surfaces is achieved in a
similar fashion as the continuity in z direction of two GT-
Bézier surfaces, which is discussed in Section 7.3.

7.6. Continuity in z1 and z Direction. 'e G1 and G2 con-
tinuity in direction z1 and z is obtained in a similar way as

the continuity in z and z1 direction which is proved in
Section 7.4.

'e G2 continuity between two GT-Bézier surfaces is
also analyzed as for twoGT-Bézier surfaces, the continuity in
z direction is achieved; when α � α∗, β � β∗, then the G1

continuity between two regions of GT-Bézier surfaces has
m1 � m2 � m mutual control points, and the control points
Pi,n1− 1, Pi,n1

(orP1i,0), P1i,1 are taken and varied in order. For
continuity in z and z1 direction, when α � α1∗, β � β1∗,
then the G2 continuity between two regions of GT-Bézier
surfaces has m1 � n2 mutual control points, and the control
points Pi,n1− 1, Pi,n1

(orP10,i), P11,i are in the same straight line
and changeable in order.

Mathematical Problems in Engineering 19



Figures 10–15 depict the G2 continuity surfaces between
two GT-Bézier surfaces of different degrees in z direction for
different shape parameters and scaling factor f. For the fixed

values of shape parameters, the control points P11,i (or P12,i)
move closer to (away from) the control points P10,i(orP11,i)

when thevalues of the scaling factor f increases (or

(a) (b)

(c) (d)

Figure 11: 'e effect of shape parameters on cubic GT-Bézier surfaces. (a) f � 2, α, α∗ � 0.5, β, β∗ � 1. (b) f � 2, α, α∗ � 0.5, β, β∗ � 0.85.
(c) f � 2, α, α∗ � − 0.5, β, β∗ � 0.65. (d) f � 2, α, α∗ � − 0.35, β, β∗ � 0.9.
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decreases), and when f is fixed and the values of shape
parameters are increased (or decreased), the surfaces move
closer to (away from) the control polygon (control net). 'is
analysis shows that the piecewise GT-Bézier surface is

smooth and continuous at the joint, which significantly
increases the abilities to solve problems in engineering
appearance design by amending the position and shape of
surfaces.
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Figure 12: 'e effect of changing scaling factor on quartic GT-Bézier surfaces. (a) f � 0.35, α, β, α∗, β∗ � 1. (b) f � 0.5, α, β, α∗, β∗ � 1. (c)
f � 1, α, β, α∗, β∗ � 1. (d) f � 1.5, α, β, α∗, β∗ � 1.
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Figure 13: 'e effect of shape parameters on quartic GT-Bézier surfaces. (a) f � 0.5, α, β, α∗, β∗ � 0. (b) f � 0.5, α, β, α∗, β∗ � 0.25. (c)
f � 0.5, α, β, α∗, β∗ � 1. (d) f � 0.5, α, β, α∗, β∗ � 0.5.
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Figure 14: Continued.
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Figure 14: 'e effect of changing scaling factor on quintic GT-Bézier surfaces. (a) f � 0.25, α, β, α∗, β∗ � 1. (b) f � 0.5, α, β, α∗, β∗ � 1. (c)
f � 1, α, β, α∗, β∗ � 1. (d) f � 0.35, α, α∗ � 0, β, β∗ � 1.
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Figure 15: Continued.
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8. Conclusions

New mth order GT-Bézier curves along with two shape
parameters which share most properties with the nth order
classical Bézier curve have been presented in this study. GT-
Bézier surfaces of order m × n have also been proposed by
using GT-Bézier curves of order m and n. 'e contour of
GT-Bézier curves and surfaces can be transformed not by
modifying the control points but it is by varying the values of
the shape parameters. Since the GT-Bézier curves and
surfaces have been described by using amendable shape
parameters, the connection of such curves and surfaces is
unwrinkled than that of traditional Bézier curves and sur-
faces. In contrast with other curve-forming techniques, the
technique proposed here can develop curves whose degree
and mathematical complication are not increased which
make it more useful in practical submissions. Some curve
and surface design examples exhibit that this scheme is more
convenient, flexible, and effective for both curve and surface
interaction modeling and has significant mathematical and
applied applications. Additionally, this scheme can be ap-
plied to generate trigonometric surfaces over triangles with
adjustable shape parameters [37].
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