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Abstract

The curve is the most basic design element to determine shapes and
silhouettes of industrial products and works for shape designers and it is
inevitable for them to make it aesthetic and attractive to improve the total
quality of the shape design. If we can find an equation of aesthetic curves,
it is expected that the quality of the curve design improves drastically
because we can use it as a standard to generate, evaluate, and deform
the curves. In this paper, we derive a general equation of aesthetic curves
that describes the relationship between its radius of curvature and length
inclusively expressing these two curves. Furthermore we show the self-
affinity possessed by the curves satisfying the general equation of aesthetic
curves.
Keywords: aesthetic curve, general equation of aesthetic curves, self-
similarity, self-affinity

1 Introduction

For industrial designers, the curve is one of the most basic design parts that
determines shapes and silhouettes of their products and works. It is necessary
to make it aesthetically beautiful and attractive to improve the quality of the
industrial design.

If we can find an equation of aesthetic curves, it is expected that the quality
of the curve design improves drastically because we can use it as a standard to
generate, evaluate, and deform the curves.

Therefore in this paper we discuss the properties of two typical aesthetically
beautiful curves: the logarithmic spiral and the clothoid curve and we derive
a general equation of aesthetic curves that describes the relationship between
its radius of curvature and length inclusively expressing these two curves. Fur-
thermore we show the self-affinity possessed by the curves satisfying the general
equation of aesthetic curves.



2 General equation of aesthetic curves

Here we will discuss the properties of two typical aesthetic curves: the loga-
rithmic spiral and the clothoid curve. We also discuss the properties of the
Archimedean spiral which does not satisfy the general equation of aesthetic
curves proposed in this paper as a counterexample to understand the nature of
the general equation better.

2.1 Logarithmic spiral

The logarithmic spiral is called the equiangular spiral, or Bernoulli’s spiral and
is well known as a curve representing the shape of the chambered nautilus. It is
closely related to the Golden Section that has been regarded as a source of the
beauty since the years of the Greeks and the Romans and is one of the typical
beautiful curves as discussed in [5].

2.1.1 Properties of the logarithmic spiral

A logarithmic spiral can be defined in the complex plane by

C(t) = e(a+ib)t, (t ≥ 0) (1)

where i is the imaginary unit and a and b are constants. Since its radius of
curvature ρ(t) and the arc length s(t) are given by

ρ(t) =
1
b

√
a2 + b2eat, s(t) =

√
a2 + b2(eat − 1), (2)

the following equation is satisfied.

ρ(t) = c0s(t) + c1 (3)

Figure 1 shows an example of the logarithmic spiral.
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Figure 1: Logarithmic spiral (a=0.2, b=1)
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Figure 2: Clothoid curve (a=1)

2.1.2 Self-similarity

The self-similarity is a characteristic property of the fractal geometry and it
becomes a similar shape to the original after scaling it like a saw-toothed
coastline[9]. We will show that the logarithmic spiral has the self-similarity
below.

A logarithmic spiral is given by Eq.(1) and we cut the head portion of the
curve and define a new curve D(t) for t ≥ 1 of C(t) as follows:

D(t) = C(t + 1) = eaeibC(t) (4)

As we see from the above equation, the curve D(t) can be obtained by scaling
C(t) by the factor ea and rotating it by the angle b about the origin. Therefore
since the original curve is recovered by scaling the curve whose head portion is
cut off, the logarithmic spiral has the self-similarity. Here we removed the head
portion where t < 1, but it is rather obvious to be able to argue similarly by
cutting an arbitrary head portion.

2.2 Clothoid curve

The clothoid curve is also called Cornu’s spiral and is regarded one of the beau-
tiful curves (for example, see [6]).

2.2.1 Properties of the clothoid curve

One of the main properties of the clothoid curve is that its curvature increases
in proportion to its arc length. Figure 2 shows an example of the clothoid curve.

A clothoid curve can be defined in the complex plane by

C(t) =
∫ t

0

eiat2dt (5)



where a is a positive constant. The first derivative of C(t) is

dC(t)
dt

= eiat2 (6)

and its absolute value is always equal to 1. Hence the parameter t is the same
as the arc length s(t)(for example, see [8]). Then the curvature is given by the
absolute value of the second derivative

κ(t) =
∣∣∣∣
d2C(t)

dt2

∣∣∣∣ = |(2iat)eiat2 | = 2at (7)

If we consider cutting off the head portion of the curve again, the radius of
curvatureρ(t) = 1/κ(t) is given by

ρ(t)−1 = c0 s(t) + c1 (8)

2.2.2 Self-affinity

Although the self-similarity can be found ubiquitously in the natural world, not
so many phenomena of the self-affinity are known. Some kind of the Brown-
ian motion has such a self-affinity that by doubling the scale of the time and
scaling its amplitude by

√
2, it shows the self-similarity[10]. That means the

self-similarity by scaling in the different coordinate axes by different values is
called the self-affinity. We will discuss the self-affinity possessed by the clothoid
curve below.

Similar to the logarithmic spiral case, we consider cutting off the head por-
tion of the curve and we define the curve D(t) whose parameter t ≥ 1 as follows:

D(t) = C(t + 1)

=
∫ 1

0

eiat2dt +
∫ t

1

eiat2dt

= P 0 +
∫ t

1

eiat2dt (9)

where the start point of D(t) is given by P 0 =
∫ 1

0
eiat2dt. Since its shape is

invariant under reparametrization of s(t) by an arbitrary monotonously increas-
ing function of t, reparametrize s(t) = c1(eβt − 1)/c0 with assuming that β is a
positive constant. Then the arc length sD(t) of D(t) is given by

sD(t) = s(t + 1)− s(1)
= eβs(t) (10)

Therefore the arc length of D(t) is obtained by scaling that of the original by
eβ .

From Eq.(8) the inverse of the radius of curvature ρD(t) of D(t) is

ρD(t)−1 = ρ(t + 1)−1

= eβ(c0s(t) + c1) (11)

Hence

ρD(t) = e−βρ(t) (12)



This means that the radius of curvature of the curve without the head portion
is given by scaling that of the original curve by e

β
α .

The clothoid curve without the head portion is identical with that generated
by scaling the radius of curvature of the original curve in the principal normal
direction by eβ/α and its arc length in the tangent direction by eβ . This means
that at an arbitrary point on the curve in the two different orthogonal directions,
the principal normal and the tangent by scaling the cut curve by the different
factors, the original curve can be obtained. This property can be called the
self-affinity.

We will discuss the self-affinity of the curves that satisfy the general equation
of aesthetic curve in Section 5 in more detail.

2.3 General equation of aesthetic curves

We can derive the following general equation including both Eqs.(3) and (8):

ρ(t)α = c0s(t) + c1 (13)

where α 6= 0 is a constant. When α = 1 and α = −1, we obtain Eqs.(3) and (8)
respectively.

As Equation (13) can express the two typical aesthetic curves: the logarith-
mic spiral and the clothoid curves and it has desirable properties discussed in
the following sections, we call it a general equation of aesthetic curves in this
paper.

2.4 Counterexample

We discuss the properties of the Archimedean spiral whose logarithmic curvature
histogram can not be approximated by a straight line properly as a counterex-
ample of aesthetic curves. We will mention the logarithmic curvature histogram
in the next section.

The Archimedean spiral is also called the uniform spiral and is a spiral whose
radius increases in proportion to the angle to the x-axis as shown in Fig.3. In
the complex plane, its general expression is given by

C(t) = ateibt, (t ≥ 0) (14)

where a and b are constants.
The definition of the Archimedean spiral is simply given by Eq.(14) and has

a geometrically regular property that the intersection intervals on the x and y
axes are constant However, the main usage of the Archimedean spiral is for the
design of machines such as water pumps and it is not so frequently used for
aesthetic design purposes.

3 Logarithmic curvature histogram

Harada et al.[1, 2] insisted that natural aesthetic curves like birds’ eggs and but-
terflies’ wings as well as artificial ones like Japanese swords and key lines of auto-
mobiles have such a property that their logarithmic curvature histograms(LCHs)
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Figure 3: Archimedean spiral (a=1,b=1)

can be approximated by straight lines and there is a strong correlation between
the slopes of the lines and the impressions of the curves.

Since the vertical value of the LCH is given by log |ds/d(log ρ)|[3] and both
s and ρ are functions of the parameter t,

log
∣∣∣∣

ds

d(log ρ)

∣∣∣∣ = log
∣∣∣∣

ds
dt

d(log ρ)
dt

∣∣∣∣ = log(ρ
∣∣∣∣

ds
dt
dρ
dt

∣∣∣∣)

= log ρ + log sd − log
∣∣∣∣
dρ

dt

∣∣∣∣ (15)

If we assume t = s, then ds/dt = sd = 1. The above equation can be transformed
using (13) to

log
∣∣∣∣

ds

d(log ρ)

∣∣∣∣ = log ρ− log(
∣∣∣∣
c0

α

∣∣∣∣ρ1−α)

= α log ρ + C (16)

where C = log |α| − log |c0|. Therefore the LCH of the curve satisfying the
general equation of aesthetic curves is strictly given by a straight line whose
slope is equal to α.

4 Parametric expressions

Equation (13) describes only the relation between the radius of curvature and
arc length of the curve and it is not suitable to draw it or analyze its properties.
In this section, we derive two parametric expressions of the general equation
of aesthetic curves given by Eq.(13). One is derived directly from the general
equation and the other is done by applying the fine tuning method[7] to the
clothoid curve.

4.1 Parametric expression of the general aesthetic curve

We assume that a curve C(s) satisfies Eq.(13). Then

ρ(s) = (c0s + c1)
1
α (17)



As s is the arc length, |sd| = 1(refer to, for example, [8]) and there exists θ(s)
satisfying the following two equations:

dx

ds
= cos θ,

dy

ds
= sin θ (18)

Since ρ(s) = 1/(dθ/ds),

dθ

ds
= (c0s + c1)−

1
α (19)

Hence

θ =
α(c0s + c1)

α−1
α

(α− 1)c0
+ c2 (20)

If the start point of the curve is given by P 0 = C(0),

C(s) = P 0 + eic2

∫ s

0

e
i

α(c0s+c1)
α−1

α

(α−1)c0 ds (21)

The above expression can be regarded as an extension of the clothoid curve
whose power of e in its definition is changed from 2 to α + 1 and its LCH line’s
slope can be specified to be equal to any value except for 0.

4.2 Another parametric expression

Here we will apply the fine tuning method developed by Miura et al.[7] to the
clothoid curve and extend its representation. The fine tuning method can scale
curvature at a point on curves and surfaces to an arbitrary value. In the curve
case, for a given curve C(t), by using a scalar function g(t) > 0 and define a
new curve as follows:

C ′(t) = P 0 +
∫ t

0

g(t)
dC(t)

dt
dt (22)

Namely differentiate the original curve, scale the first derivative by multiplying
a scale function and change the value of curvature arbitrarily. The clothoid
curve applied by the fine tuning(Fine Tuned Clothoid : FTC) is defined by the
following expression in the complex plane:

C(t) =
∫ t

0

g(t)eiat2dt (23)

where i is the imaginary unit, a is a constant and g(t) is a scale function whose
value is always positive.

By using the radius of curvature ρc of the clothoid curve, we define g(t) =
(1/2at)β If we assume β can be positive or negative values, g(t) is equivalent to
be the −β-th power of t except for the constant coefficient. The analysis results
yield

log ∆s =
β − 1
β + 1

log ρ + C (24)



where C = − log(β +1)− log 2− log a+ log c. Hence the LCH graph is given by
a straight line whose slope is (β−1)/(β +1) and the slope α can be an arbitrary
value except for 11. Figure 4 shows several FTC curves whose LCH lines’ slopes
are given by α. The curve whose α is equal to −1 is a clothoid curve.

The FTC curve which has 1 for its LCH line slope can be obtained with
g(t) = c0te

c1t2 by solving a differential equation ∆s/ρ = const where c0 and
c1 are constants. In this case, we can perform the integration explicitly and it
turns out to be a logarithmic spiral expressed by

C(t) = eic2

∫ t

0

c0te
c1t2eiat2dt =

c0

2(c1 + ia)
eic2e(c1+ia)t2 (25)

where c2 is a integration constant.
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Figure 4: Curves whose LCH graphs are given by α-sloped straight lines

5 Self-Affinity

Harada et al.[1] addressed that the curve whose logarithmic curvature histogram
was expressed by a straight line had a self-affinity, but his proof was not math-
ematically strict. His statement that “the property is called the self-affinity of
the curve that the curve obtained by cutting the original curve at two positions
and applying such an affine matrix that scales by two different scaling factors
in the two orthogonal directions becomes identical to the original curve” is mis-
leading. It might be interpreted that there is a 2× 2 matrix depending only on
the cutting positions. However it is trivial that there is not such a matrix for a

1If β is equal to −1, the curve becomes a circle



clothoid curve2. It means we need a new definition of the self-affinity for aes-
thetic curves possessed by those who satisfy the general equations of aesthetic
curves.

5.1 Self-affinity of aesthetic curves

We have already shown that the clothoid curve has a self-affinity property. Here
we will discuss the self-affinity possessed by the curves that satisfy the general
equation of aesthetic curves below.

Assume that a curve satisfies the general equation of aesthetic curves ex-
pressed by Eq.(13). Then for a given α,

ρ(t)α = c0s(t) + c1 (26)

As even if s(t) is reparametrized by an arbitrary monotonously increasing func-
tion, the shape remains the same, we reparametrize the curve by s(t) = c1(eβt−
1)/c0. Then

ρ(t) = c
1
α
1 e

β
α t (27)

Similar to the previous subsection, we get a curve D(t) by cutting the head
portion of the curve by substitute t with t+1 and obtain its radius of curvature
ρD(t)

ρD(t) = ρ(t + 1) = c
1
α
1 e

β
α e

β
α t (28)

Hence the radius of curvature of the curve without the head portion is given by
scaling that of the original curve by e

β
α .

The arc length of the curve sD(t) is

sD(t) = s(t + 1)− s(t) =
c1

c0
eβ(eβt − 1) (29)

Therefore the arc length of D(t) is obtained by scaling that of the original by
eβ .

5.2 Self-affinity of the curve

In summary, the curve without the head portion is identical with that generated
by scaling the radius of curvature of the original curve in the principal normal
direction by eβ/α and its arc length in the tangent direction by eβ , or in the
Frenet frame. This means that at an arbitrary point on the curve in the two
different orthogonal directions, the principal normal and the tangent by scaling
the cut curve by the different factors, the original curve can be obtained. We
define this kind of the self-affinity as that of aesthetic curves.

The self-affinity of the Brownian motion introduced in this subsection is for
a fixed coordinate system made by the time and the amplitude axes, but the
self-affinity of aesthetic curves is for a moving coordinate made by the principal
normal and tangent directions along the curve. Although the matrix used for
the affine transformation is the same in the moving coordinate system, no affine
matrix exists for a fixed coordinate system.

2If we apply an affine matrix to a multi-looped clothoid curve, the curve will warp and not
be another clothoid curve.



6 Conclusion

Based on the discussions about the two typical aesthetic curves: the logarithmic
spiral and the clothoid curve, we have derived a general equation of aesthetic
curves describing the relationship between the radius of curvature and the arc
length of the curve. We have shown a curve satisfying the general equation
has such a property that its LCH graph is given by a straight line. We have
found two types of parametric expressions for the general aesthetic curve: the
extended clothoid and fine tuned clothoid curves. We have also shown that
the curve satisfying the general equation of aesthetic curves has some kind of a
self-affinity and defined it as the self-affinity of aesthetic curves.

For future work, we are planning an automatic classification of curves: 1)
determine the rhythm to be simple(monotonic) or complex(consisting of plural
rhythms), 2) calculate the slope of the line approximating the LCH graph. We
think there are a lot of possibilities to use the general aesthetic equations to
many applications in the fields of computer aided geometric design. For exam-
ple, we may be able to apply the equations to deform curves to change their
impressions, say, from sharp to stable. Another example is smoothing for re-
verse engineering. Even if only noisy data of curves are available, we may be
able to use the equations as kinds of rulers to smooth out the data and yield
aesthetically high quality curves. We will develop a CAD system using the
equations.
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