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Abstract

The curve is the most basic design element to de-
termine shapes and silhouettes of industrial prod-
ucts and works for shape designers and it is in-
evitable for them to make it aesthetic and attrac-
tive to improve the total quality of the shape de-
sign. Harada et al. insist that natural aesthetic
curves like birds’ eggs and butterflies’ wings as well
as artificial ones like Japanese swords and key lines
of automobiles have such a property that their log-
arithmic curvature histograms(LCHs) can be ap-
proximated by straight lines and there is a strong
correlation between the slopes of the lines and the
impressions of the curves.

In this paper，we define the LCH analytically
with the aim of approximating it by a straight
line and propose new expressions to represent an
aesthetic curve whose LCH is given exactly by a
straight line. Furthermore we derive a general for-
mula of aesthetic curves that describes the rela-
tionship between their radiuses of curvature and
lengths.

Keywords: aesthetic curve, logarithmic cur-
vature histogram, LCH line, extended clothoid
curve

1 Introduction

For industrial designers, the curve is one of the
most basic design parts that determines shapes
and silhouettes of their products and works. It is

necessary to make it aesthetically beautiful and
attractive to improve the quality of the indus-
trial design. Harada[1] pointed out that the log-
arithmic curvature histograms(LCHs) of aestheti-
cally beautiful curves of nature such as birds’ eggs
and wings of butterflies as well as those of the
artifact such as Japanese swords and key lines
of automobiles can be approximated by straight
lines. Furthermore, the slopes of the approxi-
mated lines are strongly related to the impressions
of the curves. However their definition of the LCH
was not strictly defined mathematically and that
is done procedurally and numerically.

On the other hand, although Nakano et al.[2]
analytically defined the LCH, their definition does
not directly give conditions where the LCH can be
approximated by a straight line, or in case where
the LCH can be approximated, it can not directly
determine the slope of the line. Moreover, if the
shapes of the curves are obtained by their images,
since only discretized data are available, the LCH
graph calculated based on their definition is trans-
lated in the vertical direction from the LCH graph
calculated by Harada’s method as explained Sec-
tion 3.

Therefore, in this paper we propose a method to
define the LCH analytically with the intension of
approximating it by a straight line and formulate
the curve whose LCH is strictly given by a straight
line with an arbitrary slope. Furthermore, we de-
rive a general formula of aesthetic curves from the
relationship between the arc length and the radius
of curvature of the curve.



2 Quantification of beauty of
curves

Here we describe the definition of the LCH given
by Harada[1] and verify the validity of his method
to quantify the beauty of the curve. They as-
sumed that the subjects of his method were 1) pla-
nar curve and 2) the curve whose curvature varies
monotonically. Therefore they did not deal with
the curve whose curvature is constant such as the
straight line and the circle1.

2.1 Logarithmic curvature histogram

At first, we will make a LCH according to the
method proposed by Harada[1]. An image such
as shown in Fig.1(a) is binarized and the points
on the sword curve are sampled discretely. These
points are approximated by a B-spline curve as
shown in Fig.1(b) and the radius of curvature at
an arbitrary position on the curve is estimated.

The total length of the curve is denoted by Sall

and the radius of curvature at the sampling point
ai is ρi. The sampling points (a1, a2, · · · , an) are
extracted by the same interval and the radius of
curvature data (ρ1, ρ2, · · · , ρn) are obtained by cal-
culating the radius of curvature at each ai by using
the approximated B-spline curve.

For example, if the total length of the curve is
1000mm and the sampling interval is 1mm, the
number of the sampling points is 1001. Then the
radius of curvature interval ρ̄j is given by, for in-
stance, subdividing by 100 the interval [−3, 2], the
logarithm of [0.001, 100]. The number Nj is calcu-
lated by counting ρi/Sall included in the interval
ρ̂j and the partial length sj(=the interval of the
sampling points×Nj) is obtained. Furthermore
the length frequency s̄j is determined as the loga-
rithm of the ratio of sj to Sall(s̄j = log10(sj/Sall).
By taking s̄j in the horizontal direction and s̄j in
the vertical direction, the LCH is drawn as shown
in Fig.1(c). In this paper, if the graph of the LCH
can be approximated by a straight line, we call it
the logarithmic curvature histogram line.

1Although the line and the circle are beautiful, their
beauty originates from their simplicity and we do not deal
with these curves.

2.2 Impression of the curve

The LCHs of many natural and artificial curves
can be approximated by straight lines. Harada[1]
insisted that the impressions of the curves and
their slope of the LCH lines are strongly related
and the relationships between the impressions and
the slope can be summarized as described in the
table 1. His statements made the characters of
the beautiful curves quantitatively clearer than
the quantization criteria previously proposed by
Higashi et al.[3] that evaluates the monotonic vari-
ation of curvature.

　

(a) Japanese sword

(b) Approximation by a B-spline curve
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Figure 1: Generation of LCH



rhythm α elem. func. impressions

− sin, cubic cur. sharp, strong

simple 0 (not found) stable

+
parabola, log, gathering
log. spiral centripetal

complex
+ → − sin diverge to converge
− → + (not found) converge to diverge

Table 1: LCH lines’ slopes α and their impressions

3 Analytically defined logarith-
mic curvature histogram

As explained in the previous section, Harada’s def-
inition of the LCH is not analytical and for exam-
ple, the length frequency of the curve can not be
evaluated at a certain position on the curve or for
a given value of the radius of curvature. In this
section, we think about how to define the LCH
analytically.

Nakano et al.[2] showed that for a given curve
C(t) = (x(t), y(t)), the derivative of the arc length
s with respect to the logarithm of the radius of
curvature R = log ρ is given by

ds

dR
=

(x′y′′ − x′′y′)(x′2 + y′2)
3
2

3(x′x′′ + y′y′′)(x′y′′ − x′′y′)

−(x′2 + y′2)(x′y′′′ − x′′′y′)
(1)

where ′ denotes the derivative with respect to the
parameter t. The LCH is mathematically equiv-
alent to the graph whose horizontal and vertical
coordinates represent R and log(ds/dR), respec-
tively.

Equation (1) is enough to analytically define the
LCH. However it does not give any concrete condi-
tions for the parameter ranges where the LCH can
be approximated by a straight line or determine
the slope of the approximated line. Furthermore,
for a curve whose shape is obtained from its image
data, only discrete data are available and the par-
tial arc length sj must be a finite value to calculate
the length frequency. As a result, the LCH graph
is translated in the horizontal direction from that
obtained by Eq.(1) as explained below.

Hence we think about a transformation of the
left side of Eq.(1). Since the slope of the LCH
graph is expressed by log(ds/d(log ρ)) and both of

s and ρ are functions of the parameter t,

log
ds

d(log ρ)
= log

ds
dt

d(log ρ)
dt

= log(ρ
ds
dt
dρ
dt

)

= log ρ + log sd − log
dρ

dt
(2)

where sd = ds/dt. Equation (2) is defined by the
radius of curvature and its derivative and describe
the relationship between the radius of curvature
and the derivative of the arc length more explicitly
than Eq.(2).

In the next subsection, we make analytically
clear the relationship between the logarithm
of the finite change of the arc length ∆s =
(ρds/dρ)∆ log ρ) and log ρ. We use the parabola
as an analysis example to make the discussion
more understandable.

3.1 Parabola

We assume that a parabola is given by C(t = x) =
(x, ax2) by letting t = x where a is a positive
constant.

If the small change ∆ log ρ of the logarithm log ρ
of the radius of curvature ρ is a constant c, then

∆s =
ds

d(log ρ)
∆ log ρ =

ds

d(log ρ)
c (3)

By taking the logarithm of both sides of the above
equation and by using Eq.(2),

log ∆s = log ρ + log sd − log
dρ

dx
+ log c (4)

For the parabola, ρ and sd are given by the fol-
lowing expressions:

ρ =
(1 + 4a2x2)

3
2

2a
, sd = (1 + 4a2x2)

1
2 (5)

Therefore, by considering dρ/dx = 6axsd,

log ∆s = log ρ− log 6ax + log c. (6)

From Eq.(5), x can be expressed by ρ as follows:

x =
1
2a
{(2aρ)

2
3 − 1} 1

2 . (7)

Since the above expression can be approximated
by x ≈ (2aρ)

1
3 /2a when (2aρ)2/3 À 1, Eq.(6) be-

comes

log ∆s =
2
3

log ρ + C (8)



where C = − log a/3−log 2/3−log 3+log c. Hence
the slope of the LCH line is equal to 2/3.

Figure 2(a) shows the LCH produced by the nu-
merical method mentioned in subsection 2.1 and
the line analytically obtained by Eq.(8). From this
figure, if x is larger than x ≈ 0.778(log10 ρ = 0.5),
we can say that Eq.(8) approximates the LCH
graph very well.

The value of the slope is equal to that men-
tioned by Harada[1] and we make clear the con-
dition (2aρ)2/3 À 1 that is necessary to approxi-
mate the graph by a straight line very well. That
the LCH graph is given by a straight line means
∆s/ρα = const form log ∆s = α log ρ + C or the
α-th power of the radius of curvature ρ is propor-
tional to small change of the arc length ∆s.

Based on the above discussion, we find out that
the LCH graph defined by Eq.(2) is translated in
the vertical direction from that obtained by using
the length frequency by log c.

We perform the similar analysis for the clothoid
curve and its result is shown in Fig.2(b). As
known from this figure, the slope of the LCH line
of the clothoid curve is equal to −1 and the graph
is strictly expressed by a straight line for an arbi-
trary parameter value.

3.2 Curve with an arbitrary LCH line
slope

For the design of curves, it is desirable to repre-
sent a curve whose LCH line can have an arbitrar-
ily valued slope. Since the radius of curvature of
the clothoid curve can be formulated by a simple
expression, we consider extensions of the clothoid
curve to make them have an arbitrary slope for
their LCH lines.

Here we will apply the fine tuning method[4] to
the clothoid curve and extend its representation.
The fine tuning method can scale curvature at a
point on curves and surfaces to an arbitrary value.
In a curve case, for a given curve C(t), by using
a scalar function g(t) > 0 and define a new curve
as follows:

C ′(t) = P 0 +
∫ t

0
g(t)

dC(t)
dt

dt (9)

Namely differentiate the original curve, scale the
first derivative by multiplying a scale function and
change the value of curvature arbitrarily. The
clothoid curve applied by the fine tuning(Fine
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(b) Clothoid curve

Figure 2: LCHs and LCH lines

Tuned Clothoid : FTC) is defined by the following
expression in the complex plane:

C(t) =
∫ t

0
g(t)eiat2dt (10)

where i is the imaginary unit, a is a constant and
g(t) is a scale function whose value is always pos-
itive.

By using the radius of curvature ρc of the
clothoid curve, we define g(t) = (1/2at)β If we
assume β can be positive or negative values, g(t)
is equivalent to be the −β-th power of t except
for the constant coefficient. The analysis results
yields

log ∆s =
β − 1
β + 1

log ρ + C (11)

where C = − log(β+1)−log 2−log a+log c. Hence
the LCH graph is given by a straight line whose



slope is (β − 1)/(β + 1) and the slope α can be
an arbitrary value except for 12. Figure 3 shows
several FTC curves whose LCH lines’ slopes are
given by α. The curve whose α is equal to −1 is
a clothoid curve.

The FTC curve which has 1 for its LCH line
slope can be obtained with g(t) = c0te

c1t2 by solv-
ing a differential equation ∆s/ρ = const where c0

and c1 are constants.

α=1

α=−2 α=−1

α=−1/2 α=−1/4 α=−1/8

α=2

α=0

α=−1

α=1/8

α=1/4

α=1/2

Figure 3: Curves whose LCH graphs are given by
α-sloped straight lines

4 A general formula of aesthetic
curves

In this section, we derive a formula of the curve
whose LCH is given by a straight line. The curve
obtained here can represent aesthetic curves and
we call it a general formula of aesthetic curves

4.1 Derivation of a general formula

If we take the limit of ∆ log ρ to be 0, from the
assumption that the LCH graph is given by a
straight line, for the left side of Eq.(2) there is
a constant α and

log(ρ
ds

dρ
) = α log ρ + C (12)

where C is a constant. We call this the basic
equation of aesthetic curves. By transforming

2If β is equal to −1, the curve becomes a circle

Eq.(eq:aesthetic0), we obtain

1
ρα−1

ds

dρ
= eC = C0 (13)

Hence

ds

dρ
= C0ρ

α−1 (14)

If α 6= 0,

s =
C0

α
ρα + C1 (15)

In the above equation, C1 is an integral constant.
Therefore

ρα = C2s + C3 (16)

where C2 = α/C0 and C3 = −(C1α)/C0. Here
we rename C2 and C3 to c0 and c1, respectively.
Then

ρα = c0s + c1 (17)

The above equation indicates that the α-th power
of the radius of curvature ρ is given by a linear
function of the arc length s.3 The above equation
is called a general formula of aesthetic curves in
this paper.4

The logarithmic(equiangular) spiral and
clothoid curve are regarded as two typical beauti-
ful curves. One of the principal characters of the
logarithmic spiral that its radius of curvature and
arc length are proportional is well known and it
means that the logarithmic spiral satisfies Eq.(17)
and its α is equal to 1. On the other hand the
main property of the clothoid curve is that its
radius of curvature is in inverse proportion to its
arc length. Eq.(17) is satisfied for the clothoid
curve if α is given by −1.

In summary, the general formula of aesthetic
curves expressed by Eq.(17) includes the most typ-
ical beautiful curves such as the logarithmic spiral
and the clothoid curve.

3Note that the local property that the α-th power of the
radius of curvature ρ is proportional to the small change of
the arc length ∆s is satisfied globally for the whole curve.

4If we do not care about the derivation of the general
aesthetic formula, note that when c0 = 0, it can represent
lines and circles whose radius of curvature is constant.



4.2 Parametric expression of the gen-
eral aesthetic curves

In this subsection, we find a parametric expression
of the general formula of aesthetic curves given by
Eq.(17).

We assume that a curve C(s) satisfies Eq.(17).
Then

ρ(s) = (c0s + c1)
1
α (18)

As s is the arc length, |sd| = 1(refer to, for exam-
ple, [5]) and there exists θ(s) satisfying the follow-
ing two equations:

dx

ds
= cos θ,

dy

ds
= sin θ (19)

Since ρ(s) = 1/(dθ/ds),

dθ

ds
= (c0s + c1)α (20)

Hence

θ =
(c0s + c1)α+1

(α + 1)c0
+ c2 (21)

If the start point of the curve is given by P 0 =
C(0),

C(s) = P 0 + eic2

∫ s

0
e
i
(c0u+c1)α+1

(α+1)c0 du (22)

The above expression can be regarded as an ex-
tension of the clothoid curve whose power of e in
its definition is changed from 2 to α + 1 and its
LCH line’s slope can be specified to be equal to
any value except for 0.

5 Conclusion

Harada’s work is very suggestive to analyze the
characters of aesthetic curves. In this paper, based
on his work we have defined the LCH analytically
with the purpose of approximating it by a straight
line and formulated the curve whose LCH graph
is strictly expressed by a straight line. Further-
more we have found out the relationship between
the radius of curvature and the arc length of the
curve whose LCH graph is given by a straight line
and proposed it as a general formula of aesthetic
curves. We have shown that the logarithmic spiral

and the clothoid curve that are the two most typ-
ical aesthetic curves satisfy the general formula of
aesthetic curves newly proposed in this paper.

For future work, we are planning an automatic
classification of curves: 1) determine the rhythm
to be simple(monotonic) or complex(consisting of
plural rhythms), 2) calculate the slope of the line
approximating the LCH graph. We think there
are a lot of possibilities to use the general aes-
thetic formula to many applications in the fields
of computer aided geometric design. For exam-
ple, we may be able to apply the formula to de-
form curves to change their impressions, say, from
shape to stable. Another example is smoothing
for reverse engineering. Even if only noisy data
of curves are available, we may be able to use the
formula as a kind of rulers to smooth out the data
and yield aesthetically high quality curves. We
will develop a CAD system using the formula.
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