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Abstract
Yan, Schiller, Wilensky, Carr, and Schaefer pointed out that one of the demerits of clothoid interpolation is a jumping
behavior during the deformation of the curve. This phenomenon occurs because the clothoid curve cannot have a cusp,
where the curve is kinked or the direction of the curve is abruptly changed. We discuss how to introduce cusps for the
log-aesthetic curve including the clothoid curve and propose to use for the representation of a curve the direction angle
instead of curvature and define a new curve named τ-curve, which is defined by the direction angle of the curve.

Keywords: log-aesthetic curve; σ -curve; τ-curve

1. Introduction

Yan, Schiller, Wilensky, Carr, and Schaefer (2017) proposed as κ-
curve quadratic Bézier curve segments that pass through given
points and that have minimum and maximum curvatures. Al-
though the clothoid curve has been used in highway design and
it is well studied how to connect them and circular arcs with G2

continuity (Meek & Walton, 1989) and to interpolate G2 Hermite
data (Meek & Walton, 1998), they pointed out that the disadvan-
tageous property of the clothoid curve (Cornu spiral), one of the
log-aesthetic curves (Miura & Gobithaasan, 2016), is as follows:
As shown in Fig. 1, if one of the control points of a piecewise
clothoid curve is continuously moved, the curve suddenly flips
unexpectedly. This is because in Fig. 2 when the tangent vec-
tor at the start point P 0 is rotated, there are basically two cases:
the curve is going in the left-top direction and reaches the end
point P 1 and the curve is going in the right-down direction and
reaches P 1 and that behavior is jumpy. In Fig. 2, the blue lines
indicate the tangent directions of the curves at P 0.

The log-aesthetic curve is an extension of the clothoid curve
and it inherits the property of the clothoid curve mentioned ear-

lier. For details regarding how to input the log-aesthetic curve,
please refer to Yoshida and Saito (2006).

If the tangent of the curve is continuously changed, it is in-
evitable to have this type of the phenomenon since the curvature
will jump from positive to negative, or vice versa. Therefore, to
avoid this phenomenon, the curve should have a cusp, where the
curve is kinked and the tangent of the curve is abruptly changed.
In the next section, we will discuss about the cusp more math-
ematically.

Note that “aesthetic curves” in the title of this paper do not
have any universally accepted mathematical definitions yet, but
we regard them as curves that are suitable to be used in aes-
thetic design of industrial products. One of the most impor-
tant properties of the aesthetic curves can be said to be the
monotonicity of their curvature. Spiral curves have monotone
curvature and have been an important tool in geometric mod-
eling and computer-aided design. Bartoň and Elber (2011) in-
troduced spiral fat arcs for bounding planar free-form curves
more tightly than fat arcs. They take advantage of the cur-
vature monotonicity of the spirals and their bounding region
shows a cubic approximation order to a given spiral curve.
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2 τ-curve: introduction of cusps to aesthetic curves

Figure 1: Flip of a piecewise clothoid curve (Yan et al., 2017).

Figure 2: Shape changes according to the change of the tangent vector at one of
the end points.

The curves with monotone curvature include clothoids (Meek &
Walton, 1989), typical curves (Mineur, Lichah, Castelain, & Gi-
aume, 1998), class A Bèzier curves (Farin, 2006), and the log-
aesthetic curves, and they are frequently used for aesthetic
design.

2. Cusp of the Plane Curve

The standard textbook of differential geometry on curves and
surfaces (do Carmo, 1976) deals with a regular curve C (t), for
which dC (t)/dt �= 0 for all t in its domain and no cusp is discussed
in it. Textbooks on computer-aided geometric design (Cohen,
Riesenfeld, & Elber, 2001; Farin, 2002; Hoscheck & Lasser, 1989)
do not discuss about the cusp very well. The textbook written by
Su and Liu (1989) analyzes cusps as well as inflection points of
parametric cubic curves. A more general treatment on the cusp
is presented by Porteous (2001).

In this section, based on Porteous (2001) we discuss cusps of a
plane curve. A nonregular point is a point where the first deriva-
tive of the curve dC (t)/dt = 0. Such a point is commonly called
a cusp of the curve. A smooth, or infinitely differentiable, curve
is said to have an ordinary, or 3/2, cusp at t if dC (t)/dt = 0, but
d2C (t)/dt2 �= 0 with d3C (t)/dt3 linearly independent of d2C (t)/dt2.
Similarly, it is said to have an ordinary kink, or 4/3, cusp at
t if dC (t)/dt = d2C (t)/dt2 = 0, but d3C (t)/dt3 �= 0 with d4C (t)/dt4

linearly independent of d3C (t)/dt3. More generally, C (t) is said
to have an (n + 1)/n cusp at t if di C (t)/dti = 0 for 1 ≤ i < n
but dnC (t)/dtn �= 0, with dn+1C (t)/dtn+1 linearly independent of
dnC (t)/dtn. As we will explain in the next section, a cubic Bézier
curve can have an ordinary cusp.

3. Cusps of Quadratic and Cubic Bézier Curves
3.1. Quadratic Bézier curve

Based on the above discussion, we analyze the properties of the
cusp of a quadratic Bézier curve. At first, we locate its control
points as shown in Fig. 3. Notice that the curve is symmetrical
along the vertical line through the point at t = 1/2. Even if the
distance between the first and second control points and that
between the second and third control points are different, the
similar situation can occur when the angle made by the control
polyline at the second control point becomes 0. Suppose that
the coordinates of the control points are (−a, 0), (0, 1), and (a, 0),
respectively. Gradually decreasing a, the curve becomes degen-
erated at t = 1/2. The curve C (t) degenerated at t = 1/2 is given
by

C (t) = (0, 2t(1 − t)). (1)

Their derivatives of degree from 1 to 3 are given by

dC (t)
dt

= (0, 2(1 − 2t)),

d2C (t)
dt2

= (0, −4),

d3C (t)
dt3

= (0, 0). (2)

Hence,

dC (1/2)
dt

= (0, 0),

d2C (1/2)
dt2

= (0,−4),

d3C (1/2)
dt3

= (0, 0). (3)

Since d3C (t)/dt3 is linearly dependent on d2C (t)/dt2, the curve
does not have an ordinary cusp, but a commonly called cusp at
t = 1/2.

The signed curvature of a plane curve C (t) is given by the fol-
lowing expression (do Carmo, 1976):

κ(t) = C ′(t) × C ′′(t)
||C ′(t)||3 , (4)

where C ′(t) and C ′′(t) represent the first and second derivatives
with respect to t, respectively. a × b denotes the cross product of
two vectors a and b, and ||v|| is the norm of vector v. Applying
these expressions to the quadratic Bézier curve defined earlier,
we obtain

κ(t) = − a

(a2 + (1 − 2t)2)3/2 . (5)
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Figure 3: A quadratic Bézier curve.

Figure 4: The direction angle of the quadratic Bézier curve.

Therefore, if a �= 0, then κ(t) is finite. When t = 1/2, then equa-
tion (5) becomes

κ

(
1
2

)
= − 1

a2
. (6)

When a approaches 0, κ(1/2) become infinite (negatively infinite).
Note that at first if we assume a = 0, then κ(t) = 0 except for t =
1/2. When t approaches 1/2, κ(t) = 0/0. We usually say that κ(t)
is not defined in this situation. Since we have two parameters
a and t, the value of κ(t) depends on how they approach (0, 1/2),
but geometrically a cusp is generated at t = 1/2 as the analysis
of the derivatives shows.

The direction angle θ (t) of the curve is given by

θ (t) = arctan
(

�y
�x

)
= arctan

(
dy/dt
dx/dt

)
= arctan

(
1 − 2t

a

)
. (7)

Figure 4 shows the graph of the direction angle of the quadratic
Bézier curve. When a → 0, the direction angle approaches a stair
function, and for 0 ≤ t < 1/2, θ (t) = π/2. When t = 1/2, θ (1/2) =
∞, and for 1/2 ≤ t ≤ 1, θ (t) = −π/2. By using the direction angle,
we can deal with a cusp naturally and no special treatment is
necessary.

3.2. Cubic Bézier curve

In this section, we will analyze the properties of the cusp of a cu-
bic Bézier curve. We arrange the positions of the control points
as in Fig. 5. Note that the curve is symmetric along the vertical
line through the point at t = 1/2. The coordinates of the control
points are (−1, 0), (−a, 1), (a, 1), and (1, 0), respectively. Similarly
to the quadratic Bézier curve case, we gradually decrease the
value of a, make the curve degenerated, and cross the control
points.

The curve C (t) degenerated at t = 1/2 is given by

C (t) = ((2t − 1)3, 3(1 − t)t). (8)

Their derivatives of degree from 1 to 3 are given by

dC (t)
dt

= (6(1 − 2t)2, 3(1 − 2t)),

d2C (t)
dt2

= (6(2t − 1), −6),

d3C (t)
dt3

= (12, 0). (9)
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4 τ-curve: introduction of cusps to aesthetic curves

Figure 5: A cubic Bézier curve.

Hence,

dC (1/2)
dt

= (0, 0),

d2C (1/2)
dt2

= (0, −6),

d3C (1/2)
dt3

= (12, 0). (10)

Since d4C (t)/dt4 is linearly independent of d3C (t)/dt3, the curve
has an ordinary, 3/2, cusp at t = 1/2.

By using equation (4), the curvature of this cubic Bézier curve
is given by

κ(t)=−
4

(
3at2−3at+a−t2+t

)
3

(
a2

(
6t2−6t+1

)2 −2a
(
12t4−24t3+20t2−8t+1

) +4t4−8t3+12t2−8t+2
)3/2

.

(11)

Hence,

κ

(
1
2

)
= − 8

3
√

(a + 1)2(a + 1)
. (12)

From the above equation, when a = −1, the curvature becomes
infinite (its sign depends on a’s approaching direction). This cor-
responds to the case where a = −1 in Fig. 5, and when t = 1/2, a
cusp is formed. Note that at first if we assume that a = −1, then

κ(t) = 4
3(1 − 2t)(5 − 16t + 16t2)3/2

. (13)

Thus, when t approaches 1/2, κ(t) becomes really infinite. Geo-
metrically, a cusp is generated as in the quadratic Bézier curve
case.

The direction angle θ (t) of the curve is given by

θ (t) = arctan
(

2t − 1
2(3a − 1)t2 − 2(3a − 1)t + a − 1

)
. (14)

Figure 6 shows the direction angle of the cubic Bézier curve.
When a = −1, at t = 1/2 the direction angle reverses and its graph
becomes similar to a sawtooth wave. When a = −2, the direction
angle seems to jump, but this is because of its range and the di-
rection angle itself changes smoothly. Even in this cubic case,
we can manage to treat a cusp point naturally and no special
process is required. Therefore, in order to introduce points with
cusps for a curve, it is recommend to use the direction angle θ

instead of the arc length s.

4. σ -curve

As a new type of the curve that keeps the merit (controllability
of curvature) of the log-aesthetic curve and possesses another
merit of symmetry, the σ -curve has been proposed (Miura et al.,
2018). By using the Cesàro equation, a σ -curve is defined by

sgn(ρ)|ρ|α = ansn + an−1sn−1 + · · · + a1s + a0, (15)

where sgn(·) is the sign function. More explicitly, if the right-
hand side of the above equation is equal to 0 or positive, then
ρ ≥ 0 and

ρα = ansn + an−1sn−1 + · · · + a1s + a0, (16)

else ρ < 0 and

(−ρ)α = −(ansn + an−1sn−1 + · · · + a1s + a0). (17)
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Figure 6: The angle of the cubic Bézier curve.

In these equations, σ (s) = ρ(s)α is given by a polynomial function
of arc length s. n is called the degree of the σ -curve. Note that
in case of n = 1, it becomes a log-aesthetic curve (Miura & Go-
bithaasan, 2016). Suppose ρ ≥ 0, then its curvature κ(s) is given
by

κ(s) = (ansn + an−1sn−1 + · · · + a1s + a0)−1/α. (18)

From the above equation and dθ (s)/ds = κ(s), when n = 1 and sup-
pose the integral constant is equal to 0, direction angle θ1(s) is
given by the following expression and it can be integrated ana-
lytically:

θ1(s) = α(a1s + a0)(α−1)/α

(α − 1)a1
. (19)

5. τ-curve

According to the discussion so far, it is desirable to use direction
angle θ (s) to introduce cusp points to a curve. Similarly to the
σ -curve definition, the power β of θ (s) is given by a polynomial
function of arc length s, i.e.

sgn(θ )|θ |β = bnsn + bn−1sn−1 + · · · + b1s + b0. (20)

Supposing θ ≥ 0,

θ = {
bnsn + bn−1sn−1 + · · · + b1s + b0

}1/β
. (21)

In this research, the curve whose direction angle θ (s) is given in
this way is called a τ-curve. Similarly to the σ -curve, n is called
the degree of the τ-curve.

When n = 1,

{θ1(s)}β = b1s + b0,

θ1(s) = (b1s + b0)1/β . (22)

Suppose β �= 0, 1, then the curvature κ1(s) of the curve is given
by

κ1(s) = dθ (s)
ds

= b1

β
(b1s + b0)(1−β)/β =

(
b1/(1−β)

1

ββ/(1−β)
s + bβ/(1−β)

1 b0

ββ/(1−β)

)(1−β)/β

,

(23)

where a1 = b1/β
β/(1−β) and a0 = bβ/(1−β)

1 b0/β
β/(1−β). Furthermore,

suppose α = β/(β − 1), then we obtain

κ1(s)−α = a1s + a0. (24)

When β = 0, 1, we can derive similar formulas. There-
fore, a linear τ-curve is a log-aesthetic curve, as shown in
Fig. 7.

Figure 8 shows several examples of quadratic τ-curves. All
curves in the figure have the same total length and their direc-
tion angle is given by

θβ = 1
3

(s2 − 4s + 3) = 1
3

(s − 1)(s − 3) (25)

to clarify the effects of different β values on their shape. We
changed β from 0.25 to 1.5 in increments of 0.25.

5.1. Curvature of τ-curve of degree n

From equation (21), if we assume that θ ≥ 0 and β �= 0, 1, then
the curvature κ(s) of the curve is

κ(s) = 1
β

{
bnsn + bn−1sn−1 + · · · + b1s + b0

}(1−β)/β

× (nbnsn−1 + (n − 1)bn−1sn−2 + · · · + b1). (26)

In case of n = 2,

κ2(s) = 1
β

{
b2s2 + b1s + b0

}(1−β)/β
(2b2s + b1). (27)
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6 τ-curve: introduction of cusps to aesthetic curves

Figure 7: Relationship between σ -curve and τ-curve.

Figure 8: Quadratic τ curve: length = 4.5, θβ = (s2 − 4s + 3)/3 = (s − 1)(s − 3)/3.

Figure 9: s–τ space.

In case of β = 1/2,

κ2(s) = 2(b2s2 + b1s + b0)(2b2s + b1) (28)

and curvature κ2(s) is a cubic function of s.

5.2. The formulation of τ-curve based on variational
principle

5.2.1. Linear curve
Like a linear σ -curve is given by a straight line segment in aes-
thetic space (s–σ space), a linear τ-curve is given by a straight
line segment in s–τ space (please refer to Fig. 9).

Suzuki, Gibithaasan, Salvi, Usuki, and Miura (2018) defined a
functional that is minimized by a log-aesthetic curve with total
length l as follows:

KLAC =
∫ l

0
(σs)2 ds. (29)

By corresponding σ with τ , we obtain the following equation:

Kτ =
∫ l

0
(τs)2 ds =

∫ l

0

(
βθβ−1 dθ

ds

)2

ds

=
∫ l

0
(βθβ−1κ)2 ds = β2

∫ l

0
(θβ−1κ)2 ds, (30)

where from α = β/(β − 1), β = α/(α − 1) and the above equation
is rewritten by

Kτ = α2

(α − 1)2

∫ l

0
(θ1/(α−1)κ)2 ds. (31)

Coefficient α2/(α − 1)2 is not necessary because if we fix α, it does
not affect the extremum function, so we get

Kτ =
∫ l

0
(θ1/(α−1)κ)2 ds. (32)

5.2.2. Quadratic curve

For a quadratic τ-curve,

τsss = 0. (33)

Hence, it minimizes

Kqτ =
∫ l

0
(τss)2 ds =

∫ l

0
(β(β − 1)θβ−2κ2 + βθβ−1κs)2 ds

= β2
∫ l

0
θ2β−4((β − 1)κ2 + θ κs)2 ds. (34)

We can omit coefficient β2 and

Kqτ =
∫ l

0
θ2β−4((β − 1)κ2 + θ κs)2 ds. (35)

5.3. τ-curve with cusps

In order to solve the original problem of adding cusp points to
τ-curves, we extend equation (20) as follows:

sgn(θ )|θ |β = bnsn + bn−1sn−1 + · · · + b1s + b0 + π

n∑
i=1

U (s − si ), (36)

where U(x) is a unit step function and is defined by

U (x) =
{

1, x ≥ 0,

0, x < 0.
(37)

By adding the terms of the step functions, the direction angle
jumps by π at si, inducing a cusp. Figure 10 shows a simple ex-
ample of a curve with a cusp. Since s1 = 1, the curve has a cusp
where s = 1. Note that the change of the direction angle at a cusp
is equal to ±π and we can use ±U(s − si) instead of U(s − si) in
equation (36). Furthermore, although the change of the direction
angle at the cusp is ±π , we can specify an arbitrary angle instead
of π in equation (36).

5.4. Curve generation by minimizing functionals

We intend to generate a curve approximating a log-aesthetic
curve and we minimize equation (32) to generate a curve. By
specifying the start and end points and the tangent vectors
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Figure 10: A τ-curve example with a cusp point: θ1/3 = s, n = 1, s1 = 1, 0 ≤ s ≤ 2.

Figure 11: A log-aesthetic curve in blue and generated τ-curves by optimization
in red.

there, we generate a cubic Bézier curve. Hence, by changing the
lengths between the first and second points and the third and
fourth points and minimizing the functional, we determine the
locations of the second and third control points.

We expect the following issues for this optimization:

(i) The same shaped curve should be generated even if the
boundary condition is rotated about an arbitrary point and
the direction angles of the tangent vectors have a degree
of freedom of rotation. Hence, by changing direction angle
from θ to θ + θd, where θd is an arbitrary value, the same
shaped curve should be generated by minimizing equa-
tion (32).

(ii) When β − 1 < 0, i.e. β < 1, so 1/(α − 1) < 0, i.e. α < 1, for
direction angle θ ≤ 0, θβ−1 becomes infinite or undetermined
(a complex number). We have to avoid this situation.

At first, we attack the first issue. We change θ by rotation an-
gle θd. From equation (21),

θ + θd = (b1s + b0)1/β . (38)

Hence,

θ + θd = (b1s + b0)1/β . (39)

Therefore,

(θ + θd)β = b1s + b0. (40)

The above equation means that by minimizing functional (32)
of τ ′ = (θ + θd)β , we obtain an approximation curve of a linear
τ-curve, i.e. a log-aesthetic curve. Equation (32) is defined by

Kτ =
∫ l

0
{(θ + θd)1/(α−1)κ}2 ds. (41)

Note that θd is an arbitrary angle.

As a matter of fact, that the direction angle changes by θd

solves the second issue. We add a large angle θd to avoid the
situation where θ < 0. For example, by adding 10 rad, we can
avoid a negative θ . The important point for implementation is
when θ is relatively small, in case where β − 1 is negative and its
absolute value is large, θβ − 1 could be a very large and it causes
large errors and we cannot generate a suitable curve.

Figure 11 shows examples of optimization. On left- and right-
hand sides of the figure, the curve in blue is a log-aesthetic curve
satisfying the given boundary condition whose α = −1/2 and the
curve in red is a cubic Bézier curve generated by subdividing the
tangent vectors determined by the three points by 1000 and min-
imizing functional (35) for the linear curve on the left-hand side
and functional (41) for the quadratic curve on the right-hand
side. The polyline in green connects the control points of the
cubic curve. By minimization, we obtain a good approximation
curve with the log-aesthetic curve. For both the curves, β = α/(α
− 1) = 1/3. We add θd = 4π rad to θ .

The linear curve is almost the same as the log-aesthetic curve
and the quadratic curve has a smaller curvature than that of the
log-aesthetic curve. We will investigate the effect of θd for given
boundary conditions.

5.5. G1 Hermite interpolation by τ-curve with cusps

In the following two sections, we will show two applications of
the τ-curve to validate its usage for practical purposes. The ob-
jective of this paper is basically to produce the τ-curve and we
do not intend to extract full potential of the curve formulation.

As one of the application examples of τ-curve, we imple-
mented Matlab R© codes to extract outlines of a Chinese char-
acter. The original Chinese characters stand for the name of
the new era, “reiwa” in Japan, and we selected two strokes
of the first Chinese character. It is very common for mul-
tiple strokes to overlap each other. We used fonts, but the
codes are programmed to be able to process manually written
characters.

At first, the outline was extracted as a sequence of points and
they were smoothed by the moving average filter. Then, the dis-
crete curvatures of the outline were calculated and the points
where their curvatures are larger than a given threshold were
detected as cusps. The number of detected cusps is 10, as shown
in the top-right part in Fig. 12. The middle-right part in Fig. 12
shows the line segments connecting the cusps and the points
with curvatures higher than the thresholds. Each segment sep-
arated by the cusps and the high-curvature points were subdi-
vided to make sure for each subdivided segment to have mono-
tonic curvature. Finally, by using the positions of the start and
end points and the tangents there, a discrete linear τ-curve was
generated to satisfy G1 continuity except for the cusps and the
high-curvature points, where only G0 is guaranteed. Note that
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8 τ-curve: introduction of cusps to aesthetic curves

Figure 12: G1 Hermite interpolation by τ-curve with cusps.

Figure 13: (a) α calculation and (b) β calculation for a circle involute with weaker noise: σ = 0.00001.
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Figure 14: (a) α calculation and (b) β calculation for a circle involute with stronger noise: σ = 0.00005.

Figure 15: (a) α calculation and (b) β calculation for Aka-Fuji (Red Fuji).

the linear τ-curve is equivalent to the log-aesthetic curve and
their discrete version is generated by the method described in
Inoguchi, Kajiwara, Miura, Park, and Schief (2018). We used pa-
rameter β = 1/3 (α = −1/2) for every τ-curve. The generated
τ-curves approximate the outline very well, as shown in the
bottom-right figure.

5.6. Estimation of shape parameters α and β

The shape parameter of the log-aesthetic curve has a strong ef-
fect of the impression of the curves (Harada, 1997). In this sec-
tion, we discuss about how to calculate of the shape parameter
β of the linear τ-curve instead of α of the log-aesthetic curve.

We utilized a built-in function lsqcurvefit() in Matlab R©,
which performs least-square fitting, to estimate α and β. For α,
we used the Cesáro equation of the log-aesthetic curve, i.e. a lin-

ear σ -curve, as follows:

κ =
{

(c s + d)−1/α, c s + d ≥ 0,

−(−c s − d)−1/α, otherwise.
(42)

In the above equation, the variables to be determined are α, c,
and d. We input arc length s and κ of a unit-length circle invo-
lute curve with noise of standard deviation σ = 0.00001 and cal-
culated them as shown in Fig. 13a. The calculated values are α

= 1.841, c = 0.5131, d = 0.001419, and root mean square (RMS) =
10.4.

For β, we used the following equation of the linear τ-curve:

θ =
{

(c s + d)1/β + e, c s + d ≥ 0,

−(−c s − d)1/α + e, otherwise.
(43)

In the above equation, the variables to be determined are β, c, d,
and e. We input arc length s and direction angle θ instead of κ

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/advance-article-abstract/doi/10.1093/jcde/qw

aa014/5815389 by Shizuoka U
niversity user on 06 April 2020



10 τ-curve: introduction of cusps to aesthetic curves

of the same curve used for α calculation, as shown in Fig. 13b.
The calculated values are β = 2.004, c = 9.927, d = 0.01232, e =
0.01016, and RMS = 0.003113.

Since we used a circle involute, both α and β should be 2. Even
with noise, β is very close to 2 because we use the first derivative
related value of the curve, i.e. θ , instead of the second derivative
related value of the curve, i.e. κ.

As shown in Fig. 14 for a stronger noise, i.e. σ = 0.00005, the
variables of the log-aesthetic curve were α = 1.564, c = 0.6647, d
= 0.009096, and RMS = 60.55. Those of the linear τ-curve were β

= 2.022, c = 9.927, d = 0.01232, e = 0.01016, and RMS = 10.4. We
could obtain β much closer to 2.

In Fig. 15, we show the preliminary result of the calculation
of β for the mountain left ridgeline of Aka-Fuji (Red Fuji), which
is a famous ukiyoe. The variables of the linear τ-curve were β

= −1.001, c = 0.00009857, d = −0.4346, e = 0.001353, and RMS =
0.01553. We will continue our research to calculate β for various
industrial products and artistic works.

6. Conclusions and Future Work

The purpose of the paper is to propose a new type of free
curves for computer-aided design and other computer-related
communities, especially for aesthetic design of industrial parts.
For practical design, Bézier, B-spline, and NURBS are dominant
choices, and in spite of many researchers’ efforts, people are us-
ing the traditional representations of free-form curves and sur-
faces. The curve we have proposed in this paper is a new type
of aesthetic curve, which includes the log-aesthetic curve when
the curve is of degree 1. The parameter of the τ-curve is di-
rection angle instead of curvature to eliminate the demerit of
clothoid interpolation, which is a jumping behavior during the
deformation of the curve. We have discussed about its properties
and formulation-based variational principle, and shown various
curve examples. One of the theoretical advantages of the new
curve is that we are able to find a good method to estimate shape
parameter α of the log-aesthetic curve because the degree of the
derivatives of the τ-curve for its definition is less than that of the
log-aesthetic curve; i.e. the τ-curve is defined by the first deriva-
tive: θ instead of radius of curvature, which is related to the sec-
ond derivative of the curve. We have also shown that the shape
parameter β can be determined by the direction angles only and
stably calculated.

For future work, we will investigate the effect of θd for given
boundary conditions and what practical situations are suitable
to use cusps of τ-curves and to use quadratic ones.
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